From: John Kitchin <jkitchin@andrew.cmu.edu>
To: Tim Cross <theophilusx@gmail.com>
Cc: org-mode-email <emacs-orgmode@gnu.org>
Subject: Re: state of the art in org-mode tables e.g. join, etc
Date: Sun, 21 Feb 2021 11:23:38 -0500 [thread overview]
Message-ID: <CAJ51ETrQzgP3DGespaGx0Yj5gLSDciVtV-9G4gM33-xZdHxNug@mail.gmail.com> (raw)
In-Reply-To: <CAJ51ETpKCuGiSX9GJPeyUY6y6M9Nn8PHWyVidtP6ts=MqrnbiQ@mail.gmail.com>
[-- Attachment #1: Type: text/plain, Size: 8747 bytes --]
For fun, here is the sqlite equivalent of the Pandas example using the same
tables as before
** aggregation example
Examples from https://github.com/tbanel/orgaggregate
#+NAME: original
| Day | Color | Level | Quantity |
|-----------+-------+-------+----------|
| Monday | Red | 30 | 11 |
| Monday | Blue | 25 | 3 |
| Tuesday | Red | 51 | 12 |
| Tuesday | Red | 45 | 15 |
| Tuesday | Blue | 33 | 18 |
| Wednesday | Red | 27 | 23 |
| Wednesday | Blue | 12 | 16 |
| Wednesday | Blue | 15 | 15 |
| Thursday | Red | 39 | 24 |
| Thursday | Red | 41 | 29 |
| Thursday | Red | 49 | 30 |
| Friday | Blue | 7 | 5 |
| Friday | Blue | 6 | 8 |
| Friday | Blue | 11 | 9 |
#+begin_src sqlite :db ":memory:" :var orgtable=original :colnames yes
drop table if exists testtable;
create table testtable(Day str, Color str, Level int, Quantity int);
.mode csv testtable
.import $orgtable testtable
select Color, count(*) from testtable group by Color;
#+end_src
#+RESULTS:
| Color | count(*) |
|-------+----------|
| Blue | 7 |
| Red | 7 |
** join example
Example from https://github.com/tbanel/orgtbljoin
#+name: nutrition
| type | Fiber | Sugar | Protein | Carb |
|----------+-------+-------+---------+------|
| eggplant | 2.5 | 3.2 | 0.8 | 8.6 |
| tomatoe | 0.6 | 2.1 | 0.8 | 3.4 |
| onion | 1.3 | 4.4 | 1.3 | 9.0 |
| egg | 0 | 18.3 | 31.9 | 18.3 |
| rice | 0.2 | 0 | 1.5 | 16.0 |
| bread | 0.7 | 0.7 | 3.3 | 16.0 |
| orange | 3.1 | 11.9 | 1.3 | 17.6 |
| banana | 2.1 | 9.9 | 0.9 | 18.5 |
| tofu | 0.7 | 0.5 | 6.6 | 1.4 |
| nut | 2.6 | 1.3 | 4.9 | 7.2 |
| corn | 4.7 | 1.8 | 2.8 | 21.3 |
#+name: recipe
| type | quty |
|----------+------|
| onion | 70 |
| tomatoe | 120 |
| eggplant | 300 |
| tofu | 100 |
#+begin_src sqlite :db ":memory:" :var nut=nutrition rec=recipe :colnames
yes
drop table if exists nutrition;
drop table if exists recipe;
create table nutrition(type str, Fiber float, Sugar float, Protein float,
Carb float);
create table recipe(type str, quty int);
.mode csv nutrition
.import $nut nutrition
.mode csv recipe
.import $rec recipe
select * from recipe, nutrition where recipe.type=nutrition.type;
#+end_src
#+RESULTS:
| type | quty | type | Fiber | Sugar | Protein | Carb |
|----------+------+----------+-------+-------+---------+------|
| onion | 70 | onion | 1.3 | 4.4 | 1.3 | 9.0 |
| tomatoe | 120 | tomatoe | 0.6 | 2.1 | 0.8 | 3.4 |
| eggplant | 300 | eggplant | 2.5 | 3.2 | 0.8 | 8.6 |
| tofu | 100 | tofu | 0.7 | 0.5 | 6.6 | 1.4 |
John
-----------------------------------
Professor John Kitchin
Doherty Hall A207F
Department of Chemical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213
412-268-7803
@johnkitchin
http://kitchingroup.cheme.cmu.edu
On Sun, Feb 21, 2021 at 10:03 AM John Kitchin <jkitchin@andrew.cmu.edu>
wrote:
> Thanks Tim and Greg. I had mostly come to the same conclusions that it is
> probably best to outsource this. I worked out some examples from
> the orgtbljoin and orgaggregate packages with Pandas below, in case anyone
> is interested in seeing how it works. A key point is using the ":colnames
> no" header args to get the column names for Pandas. It seems like a pretty
> good approach.
>
> * org-mode tables with Pandas
> ** Aggregating from a table
>
> Examples from https://github.com/tbanel/orgaggregate
>
>
> #+NAME: original
> | Day | Color | Level | Quantity |
> |-----------+-------+-------+----------|
> | Monday | Red | 30 | 11 |
> | Monday | Blue | 25 | 3 |
> | Tuesday | Red | 51 | 12 |
> | Tuesday | Red | 45 | 15 |
> | Tuesday | Blue | 33 | 18 |
> | Wednesday | Red | 27 | 23 |
> | Wednesday | Blue | 12 | 16 |
> | Wednesday | Blue | 15 | 15 |
> | Thursday | Red | 39 | 24 |
> | Thursday | Red | 41 | 29 |
> | Thursday | Red | 49 | 30 |
> | Friday | Blue | 7 | 5 |
> | Friday | Blue | 6 | 8 |
> | Friday | Blue | 11 | 9 |
>
>
> #+BEGIN_SRC ipython :var data=original :colnames no
> import pandas as pd
>
> pd.DataFrame(data[1:], columns=data[0]).groupby('Color').size()
> #+END_SRC
>
> #+RESULTS:
> :results:
> # Out [1]:
> # text/plain
> : Color
> : Blue 7
> : Red 7
> : dtype: int64
> :end:
>
> The categorical stuff here is just to get the days sorted the same way as
> the example. It is otherwise not needed. I feel there should be a more
> clever way to do this, but didn't think of it.
>
> #+BEGIN_SRC ipython :var data=original :colnames no
> df = pd.DataFrame(data[1:], columns=data[0])
> days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
> 'Saturday', 'Sunday']
> df['Day'] = pd.Categorical(df['Day'], categories=days, ordered=True)
>
> (df
> .groupby('Day')
> .agg({'Level': 'mean',
> 'Quantity': 'sum'})
> .sort_values('Day'))
> #+END_SRC
>
> #+RESULTS:
> :results:
> # Out [2]:
> # text/plain
> : Level Quantity
> : Day
> : Monday 27.5 14
> : Tuesday 43.0 45
> : Wednesday 18.0 54
> : Thursday 43.0 83
> : Friday 8.0 22
> : Saturday NaN 0
> : Sunday NaN 0
>
>
> [[file:/var/folders/3q/ht_2mtk52hl7ydxrcr87z2gr0000gn/T/ob-ipython-htmlMnDA9a.html]]
> :end:
>
> ** Joining tables
>
> Example from https://github.com/tbanel/orgtbljoin
>
> #+name: nutrition
> | type | Fiber | Sugar | Protein | Carb |
> |----------+-------+-------+---------+------|
> | eggplant | 2.5 | 3.2 | 0.8 | 8.6 |
> | tomatoe | 0.6 | 2.1 | 0.8 | 3.4 |
> | onion | 1.3 | 4.4 | 1.3 | 9.0 |
> | egg | 0 | 18.3 | 31.9 | 18.3 |
> | rice | 0.2 | 0 | 1.5 | 16.0 |
> | bread | 0.7 | 0.7 | 3.3 | 16.0 |
> | orange | 3.1 | 11.9 | 1.3 | 17.6 |
> | banana | 2.1 | 9.9 | 0.9 | 18.5 |
> | tofu | 0.7 | 0.5 | 6.6 | 1.4 |
> | nut | 2.6 | 1.3 | 4.9 | 7.2 |
> | corn | 4.7 | 1.8 | 2.8 | 21.3 |
>
>
> #+name: recipe
> | type | quty |
> |----------+------|
> | onion | 70 |
> | tomatoe | 120 |
> | eggplant | 300 |
> | tofu | 100 |
>
>
> #+BEGIN_SRC ipython :var nut=nutrition recipe=recipe :colnames no
> nutrition = pd.DataFrame(nut[1:], columns=nut[0])
> rec = pd.DataFrame(recipe[1:], columns=recipe[0])
>
> pd.merge(rec, nutrition, on='type')
> #+END_SRC
>
> #+RESULTS:
> :results:
> # Out [4]:
> # text/plain
> : type quty Fiber Sugar Protein Carb
> : 0 onion 70 1.3 4.4 1.3 9.0
> : 1 tomatoe 120 0.6 2.1 0.8 3.4
> : 2 eggplant 300 2.5 3.2 0.8 8.6
> : 3 tofu 100 0.7 0.5 6.6 1.4
> :end:
>
>
> John
>
> -----------------------------------
> Professor John Kitchin
> Doherty Hall A207F
> Department of Chemical Engineering
> Carnegie Mellon University
> Pittsburgh, PA 15213
> 412-268-7803
> @johnkitchin
> http://kitchingroup.cheme.cmu.edu
>
>
>
> On Sun, Feb 21, 2021 at 1:54 AM Tim Cross <theophilusx@gmail.com> wrote:
>
>>
>> Greg Minshall <minshall@umich.edu> writes:
>>
>> > John,
>> >
>> >> Is there a state of the art in using org-tables as little databases
>> >> with joins and stuff?
>> >
>> > i have to admit i do all that with an R code source block. (the dplyr
>> > package has the relevant joins, e.g. dplyr::inner_join().) and, in R,
>> > ":colnames yes" as a header argument gives you header lines on results.
>> > (maybe that's ?now? for "all" languages?)
>> >
>>
>> For really complex joins and ad hoc queries, I would do similar or put
>> the data into sqlite. For more simple ones, I just define a table which
>> uses table formulas to extract the values from the other tables - the
>> downside being the tables need to have the same data ordering or the
>> formulas need to be somewhat complex. Provided the tables have the same
>> number of records in the same order, table formulas are usually fairly
>> easy.
>>
>> I did think about writing some elisp functions to use in my table
>> formulas to make things easier, but then decided I was just re-inventing
>> and well defined database solution and figured when I need it, just use
>> sqlite. However, it has been a while since I needed this level of
>> complexity, so perhaps things have moved on and there are better ways
>> now.
>>
>> --
>> Tim Cross
>>
>>
[-- Attachment #2: Type: text/html, Size: 11492 bytes --]
next prev parent reply other threads:[~2021-02-21 16:24 UTC|newest]
Thread overview: 12+ messages / expand[flat|nested] mbox.gz Atom feed top
2021-02-20 21:15 state of the art in org-mode tables e.g. join, etc John Kitchin
2021-02-21 4:40 ` Greg Minshall
2021-02-21 6:45 ` Tim Cross
2021-02-21 15:03 ` John Kitchin
2021-02-21 16:23 ` John Kitchin [this message]
2021-02-22 6:52 ` Cook, Malcolm
2021-02-22 8:12 ` Greg Minshall
2021-02-22 15:21 ` Cook, Malcolm
2021-02-22 18:41 ` Greg Minshall
2021-02-25 14:50 ` John Kitchin
2021-02-22 8:27 ` Derek Feichtinger
2021-02-24 22:21 ` John Kitchin
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
List information: https://www.orgmode.org/
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=CAJ51ETrQzgP3DGespaGx0Yj5gLSDciVtV-9G4gM33-xZdHxNug@mail.gmail.com \
--to=jkitchin@andrew.cmu.edu \
--cc=emacs-orgmode@gnu.org \
--cc=theophilusx@gmail.com \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
Code repositories for project(s) associated with this public inbox
https://git.savannah.gnu.org/cgit/emacs/org-mode.git
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for read-only IMAP folder(s) and NNTP newsgroup(s).