From mboxrd@z Thu Jan 1 00:00:00 1970 From: Eric S Fraga Subject: [bug] Tables in lists not exported to ODT Date: Fri, 13 Jan 2012 11:54:22 +0000 Message-ID: <87ipkfu8b5.fsf@ucl.ac.uk> Mime-Version: 1.0 Content-Type: multipart/mixed; boundary="=-=-=" Return-path: Received: from eggs.gnu.org ([140.186.70.92]:44457) by lists.gnu.org with esmtp (Exim 4.71) (envelope-from ) id 1RlfiK-0001By-Rz for emacs-orgmode@gnu.org; Fri, 13 Jan 2012 06:54:38 -0500 Received: from Debian-exim by eggs.gnu.org with spam-scanned (Exim 4.71) (envelope-from ) id 1RlfiG-0003vH-OM for emacs-orgmode@gnu.org; Fri, 13 Jan 2012 06:54:32 -0500 Received: from vscane-b.ucl.ac.uk ([144.82.108.141]:35535) by eggs.gnu.org with esmtp (Exim 4.71) (envelope-from ) id 1RlfiG-0003vB-D3 for emacs-orgmode@gnu.org; Fri, 13 Jan 2012 06:54:28 -0500 Received: from [85.210.141.126] (helo=localhost) by vscane-b.ucl.ac.uk with esmtpsa (TLSv1:AES128-SHA:128) (Exim 4.76) (envelope-from ) id 1RlfiB-0002kF-Dm for emacs-orgmode@gnu.org; Fri, 13 Jan 2012 11:54:24 +0000 List-Id: "General discussions about Org-mode." List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: emacs-orgmode-bounces+geo-emacs-orgmode=m.gmane.org@gnu.org Sender: emacs-orgmode-bounces+geo-emacs-orgmode=m.gmane.org@gnu.org To: emacs-orgmode@gnu.org --=-=-= Content-Type: text/plain Hello, I am trying to export a document which includes small tables within a list. The export to PDF via Latex works perfectly. However, when I export to ODT, the tables simply disappear. Attached is a simple example to illustrate the effect, both org and odt files. I have looked at the documentation but have not seen any caveat related to tables. Have I missed something or is this a bug? Thanks, eric -- Eric S Fraga (GnuPG: 0xC89193D8FFFCF67D) --=-=-= Content-Type: application/vnd.oasis.opendocument.text Content-Disposition: attachment; filename=examplebug.odt Content-Transfer-Encoding: base64 UEsDBAoAAAAAAFNeLUBexjIMJwAAACcAAAAIAAAAbWltZXR5cGVhcHBsaWNhdGlvbi92bmQub2Fz aXMub3BlbmRvY3VtZW50LnRleHRQSwMEFAAAAAgAU14tQB0eBpTGFQAAn+4AAAoAHABzdHlsZXMu eG1sVVQJAAOOGhBPjRoQT3V4CwABBOgDAAAE6AMAAO1d67LbuJH+P0/BaCqp3apQInXXWZ+kxmN7 xrUeOxk7yc8URUIS1xSpAinraH7ts+yj7ZMEVxKkQIrgRaROjl3l4wM0Lt1fNy6NJvDqz097T/sG YOgG/uPAHBoDDfh24Lj+9nHwty/v9OXgz3/67tXvdF37DIAGInsUwO3o17c/vPnlrbYJoGYHhzN0 t7tIc330+96KUFWarqNSwWbj2uDBCezjHviRHkZnD4QaatIPH2jm4+AI/YfACt3wwbf2IHyI7Ifg AHxe6EGkfiAdpCmksrLFCbFYOgJPUdnCmDZV1lqXb5kQi6UdaJ3KFsa0CAmx+CYoW/gp9PRNoNvB /oAwyfTiyXP9r4+DXRQdHkaj0+k0PE2GGFlztVqNSG7cYTumOxyhR6gcewQ8gBsLR+bQHHHaPYis sv3DtGKX/ON+DWBp0ViRdYFq+G1bWiO+bXNEY+8sWFo3CHEa3olTHt6JI5ZFtrPLwWQ5+gVlkn9+ +ZDoAtyXbQvTpkRlQ/dQmk1KLZYPgiDuKi5ADZR0d2wY0xH9XaA+FZKfoBsBKJDbheS25dmxxIO9 TGiIzhwhCh18w2rKqSFmOrfm2QiCQwCjuCOb8gMUks44Nq9dtPfyzQvnctItdBwpKerOZIRMDSm6 /s0Fp+8HGhsFhfF6PPjTdxofaDcBGmQ3lg10B9heiHK0V9RG4hyN/o45eRx8Qmx8Pu/XAeoMsgdO tXe9cypzdLWmL9Yu2FumpBqaU6KKH4MjdAHUPoKTpJo/WIcg/C+BhiYMtFSVmFbfAh9AF+nPPnAA 9FMkBzeykYlt3CfglOjTx8/u/vPRl/QnyWmz/S8uUjjMrfYrEqKsH1QMGboSsoGsvouufbOgi6es Er37AVHKNIen57centwwrNl6LjQlkAnPYQT2NTvANDtX5RvowKtRrmVzm6drKqGzDthYR48ttngD rGdbaB12ro3HjJiepekHiEY1GLlIkfCy4yHcWU5w0lEzIYj0p8eBMZzYqMuSzHMmM0Jzoo6WEEAP D5aNFjD6LoDub4gHy8Ok42Uh8TfcDfuSFI25ZWu9IJXUyUTjIT5ObrTT6ZJwY3khQ59L6GBBi0hJ lBHNwmV06xgFuB2kE64DAkpqeYddrAOkK2sILLTkCiOkARHPwfMe7h8eKx4HHtSjdUorXN8BeLLB y2eRId5R0k/eUbTWRLAHh5B1f5Tff5E/wsQFa8cQILn4GGbSEzvwArQ6i+ARzeqbgHYvdH9D3TbH h4ikeZa/PVpblAR8kmAHRz+CSD9+eh3LAkRopte/oqGR8EErFFjGdepovrV8XjMryCrneb/teA5r hWf8+PGyPrzU88BTTo1x7s7N1hlnvf/IxoSRxM5K2l+MxOCqfiHh7c6HHfDJfkr3LAdNJjrp1ePA D5Ay7N2YkZJqeDj6dnSkFZ5QNuIXSQChcF1PuWrpjoss1seNoMXHzEwMKa3JByTWtBVV0DIBxJz5 sE09xE1ylZLMKU2rKWku1jbJHNKcHovKBfhIktU4CPaW6+t4g8PVbnxBdDiGuwxJbSMhO+aUgZAU UXfopnodQGwTWOHQuI40x7MOIdbmZrqgw+Ak6QZKzdjpVwAOehRsQbTD+1dsh4VdwDnYofLpGGGD 0+jGF3WceE1QJnE4BDQ31T+2bIdbVpR1L0Xvof2Ox0qRDJKAFIZrBGpOD49o9YCUYaiJqdR9g0lT 04qHTJ5VK2JA6haygtAlOmGhuZeMQ3xSs9Yo2/LcrY/3S6xuSeUZQtYCSdwgcIMTcPT1GY9+0Y4M Wkj2ZFRxyfz4ONCN4WI+xkMSytlbEA1tqOpNhCd9mjFijI0KOGNzZ55QFUQ+VhE5LYmG14NnnWmV Ia7iTqEwh4Y5l0HBM24LxaQ+FJP7hWK8kCNB0m8LxFQm8vuV7Gw8lYuWZtxWtrPnJdvFYimXLc24 rWznz0m246Exkc6TPOO2sl08L9mOl9KJj2fcVrbL5yXbmXS4Zem3lezqeUl2scoRLc24rWxN4zkJ dzI0ptKpjGc0JNxMrrDdpPVebiU/R0gsFnQGmQ1w4qjibgTPCtEaGNefco1fVvkzsBzBpZRbI0qI YwJ0eW98LEWR4AtK+OfY+Oc6cM6ynpXxqjEAouCAt4XT8SQNzDqIInygaAzHJp8iyQaf+Ih94iO2 vJN1Dsu4twTfFTsVyXispokXR9npJC2r4EHC5VN+iqyL5BJcGQB8n5RQaGJ2HQWohW0xroqMf0Am WYWjAo3FVj5QUKEstKYqDz9aBzwSNggM6jC0KlhdYlp5VkcGMuoYI+ceYeymZAM8Gt94wIhRbIk5 PmKahks8DtwIDe92KfduUoznSgrL4SrnzBUaiPNZE4p4v0fzz1ODaLukvqtoNwhd0xbA5iZskKZ8 +GIUmllFbpmpr9T0xX3DqSld8NbmDYFXtNyc/T7R8hPA8XmPg3XgOflKTooImbQUz5aXTTQ4p3RM QMpXh2tcDNe4Y7jGNeGaFgxKaihmFwXXhio1lOW1Z8epFvVgUqwHk471YNKkHlQDvB6gDcM1LYZr 2jFc03pwLcVBto7VLjODZ6NGK6/8hjY7K1aCWcdKMGtQCSqhXQvNhrGaF2M17xireT2sFspYLepg lVO4KawWxVgtOsZq8YJVgtWyGKtlx1gtX7BKsFoVY7XqGKvVC1bCNt4oBivJ72ojb7zAJcA1jNzI A1cwSxNVAI46eMr4JWnkLD7beRzYqDb8DRIt8T/HMHI3Zx1HFKL6TwF0UtHhCk7zmtzkquHn4zol KaZh9s46YEba5b/kjnapvqNd1trR5pSupcGf4LYyiLRgU6cX8WFhKemPKxzxZJWq7XGzj0pb5I7L 01pVx1slz5q63taBMy7bkfYa9Q4o8U96Bi+fb+KjSi1N1dD5nuqpJY9Unq5WafFBOmhyoaZiC4zk Awwcd66nMivNVvikE3P0vkBymEZ73x+hzYaGYZYXmj4dzq7LLRVsEn9alQ4T4cmcVxZsIqp6LPp0 Fdc+zioP2DsXUsTwsvOazhNijXx20CelV1B4bh+NKv3P9Duoa9JjZH0SnYral5TdvSj+Z8s7RlbD IQ3lUKhwxq0Qp4GmQHxlAdaTzIoqrY6cUKsRc5UpqnbUX8eOr+thi0Egc/VdybzWriSndK1diagn OeEMsYZUimdIBZD0STNqjVDmImkgOh8Qn6Q3PMlDBoH0ja36HbR0BU4mLyJRgMNbjXMizjlxEDHO lQIhmsS58eVrPaznw5lh3jHeOfEOMd6VAh4axXu1WvYKb8MY3zHeOQETMd6VIiYaxNtE9t0nvGfI vid3jHdObESMd6XgiEbxXq0WvcLbMKZ3jHdOfEWMd6UAiwbxHiP7nvcI7ymy73vGOydGI8a7UpBG o3ivVrNe4W0YszvGOyfOI8a7UqBHg3hPkH1Pe4T3BNn3/I7xzokVifGuFCzSKN6r1aRXeBvGPe+/ 8+JNEkdLpYCTBhGfIgvvE+JjZOHLO0P8r8eAOpbDKmDmeJbJpa8N+fczqcUfPCYemZaPDv8CAf1U GwGIjQUfdsjNRaTURLIO5FzrxJr1OvnMN3WNbcbrbBR87Cu7UDblf5YWjv3H6dtzM1UkbugKJ+qf 4PbvAIaVAgikClEGmrVlf93C4Og7/EbA720D/yUyPVgOvaDeGBpTrtv0NjiSZqLxRgsDz3W07w3y h/eR3luKv9X3M+Oa0KK7t7ag3BWaGTFekeM7fO3vP1wn2r32Avvri0SblugHK4w+4HvxKkhWgk9T g8hwbOZ8cX4teAfaTfDFq+meoR9T0VqVD87bDRJTiwvEl0Ly1V9txoqv1uDN1Tjuzevx5Qf9rci3 0pHutTPd3PPbK0e0pc9gFTD5gBZtdXDh0CpD4AkNN6/grFu/isv2m7KX2jC0xl/14ak2g7WGKJUx qq6GxiNHz1SU96u2jlZnsGUl5R2rr6XVWWztG4lM3K44WOdF7aYG9JoxeMWh6mUii1KzkCL374Ig 8oOoWpB2Q1fzVIrfKBtS2GIoV3ZfXLhprr8dfuduj7ASUPz6peI13nvPQ0YFifeJh2E/XY0EFEuR wOynl5jAf8uYQDK819HOqqPILSaJn+P3XrBBiBviTJh2TKdV3TXXuYqwUQdkenxlTx4QLT9hR4VA SAKfNPRzMqM/DX7JWuLdSXl2mIESz42Qyiw0m0x6mU0UWp+gbmpOcET6p32/NPBfVWvlChMQAVDn k/LHW1mrEg1Wmhfb21x9Nni7P+zw03BZFSv/kS/OlX8fRpSt4Psxkl/zA7G/ocEVehIbucqAkHrk lXBuiKNwICchWsseyZBTMPckYZL8fyD3X6KRyQ+p6Sp/4xhB9yuIdqi+7a4O66TDrJ4096o9Co7Q BsWHJpRGelxSss8F5xTF8lU5tcg/mFCNb3flX3fci3G9fbJw+X8LrLBvN3DkvBbMsmmtHyVv47x+ +9P7jw8aqlb7YQvQVKx9xuVC/kROQT++BE5QRWX4schmQ8431AXwJqgwjgoNG2jKrNTwF+timV+m XcmREFooLMG80ufxexBGSN/rCGAN8N86rf83OOP1ZZ1OzDYrYFVCgXfiH2ipd7h00ETg6t3ZBEu4 BfLxnZbF1vH245s82yiq/rXEYVJ6MK3j3/jIX7jCpk4flQ3lc1xMqWXIFKTIvSlJY/K2OJ2WJqrY kuXbuwBeaSlNVGXFkUTWhEeUrc2Wv690KwAqSx917kNn1s12ZV2lI+/xntUH/Evqr3IkOZUmklQb 7A2yQ9qIrxX+9vSUfq7QF6aUG621Kd3FK4ZPSXha+hlDsYuXDxFKysV5pKQiSj/R12ovhoWSL9uS XSc1Qp1GoonOgG/bhyfuhUL/P6c8UvTBTJFb/qYs1j0EfnC4yID4BqgLd0PybC0tmXaXCLmZ4qqe Soh+3FJOl77kcd6tDJc5/Gb4bLoQc2CYWTRwpzwPxEM38zScyATs6HGfw8snUzENUkU/QkvQ2ClR DVdSjbDyrohvUk06IMecXcbjEFdPOh4n71wQrxfQyh+ZnPYeh+GECPjri+g3dNQjJfJ0KH9dH1tp LTXrsdldkd5fkNQ6EN0WyCwq36AEe0oLde86jncpcCaYhC1VkbIOltq/CkRJrn3GpzZGfEddKvqM pe1dCHGdsa/S9lwkCQjs6D/QOPVHLfXPf7IXw73j3vXpw8a4epKGDRJaYSQkQeAIv20hAL7w+9o7 iuW31n5v8Q6zGhG7uusjkYZkscIGHpJJouT0AD/wHZ0lxei7RSH3TCsE213qT8FgwU4CgBOPF9eH i7hMy1pPM5A28bUNFVLhOKJ2IFUyKJj35Ohz9x9eRUFAMSg7eG1gsNfrTzCkGjG6QnWOyUwwYodT FlZhKCQKwdSjcEWSrxy0WJ2ppE0V6H6Cuo5lnSnsjrErOfddQ/AOZsNK1tzWBPLex3vLePq4PnvQ AjdfMFkhebpe0WzXVgjEE7Oml5WJBLV3AdwfPauEBBll4W6vomzqbfBU7Uk8MKg99RApXhFNwdDF CtYQ3q0E1l/hVMOfLHoD1Bj+j26FB7R2x29iVeCTbWQrMyoYVzu8Nreka1BqjOXG5v4CqSkvuLoT cBvrrHjndAsNff5boXq+trIrJ2VTEyb1L1b4tfyiCFPXiOTMRPVVj3JmTScxCeQ5W/Pilmwff5wo PHNb59QwJYQ29x9tO/7bUFrJ4f0G/bFjYeTuGC72CzIP83h+iJr94LP0FoJFBoYMyJRKpA6Sc+68 TI6Q+RMQSY3Cg9ks7jD97DhzJYkaVHR2jR8nD4+bjfuELycQEvmL5Wa/nyzHRSJrPRC6wK9UEA5U c28Q0CVfC6Q/I1B92DwHJEUYxy8wSmA01SA0O4Nv8gKfDD51KzQ7tcLpC4wSGMdqEI47g2/2Ap8M PnUrHHdqhfMXGCUwTtQgnHQG3+IFPhl8w5kigKRANxAuXyCUQDgVnuwpCSIv0g2MqxcYpTAqWuK0 Q0s0jRcMJRjO1E1x1rwpihSJb7DIGcRfKsvxA5FHyopdQOuj54EorSOlVYSQ0RrIcd/j4P//9/+e gz4g1PO0IcfXo6IJpT3Mnw7AZ19mjAp1iGKgiHN5H9EzxnmZb/dypJdqVt8TrMs7lJ4t1ubQzN+3 yn1HptqutSdYl/c6PWOs52pIz+8Q5/LuqWeLc64rsbYjsScYl/ddPV+Mh1O1OZoXuDesyzu6njHW C7U5mhe4N6zLe8SeLdaTodLoTcnvDefyLrNnjLPSWmxyl2sxBb/aswW60J/diDe7TbAlzjcetkhx BI5G/GksbrHILfcJbnkZXKRCDFbjzleqH2v8dAL+PnM4nxCvNcnbY0QI6uyTQp5dLLuqgUkt82YO x4tOWJvcgLWV0Q1s09Z5Gw9n005Ym7XO2mRoLrqBbX4D3pZmJ6wtWmdtOpxOu4Ft2TpvsyF9kezm rK1uwNrC7Aa25OG71pibD5uctwvWPK/JwkhtzcPLXF3zlDx0pPVdP5Sut6KusTK6dmEc/0jjc2TB zA1r5Lop1NcQIG140sObnvJ1IViVZdk9yFV2otaNXBXWhPcgWNnxVReCVVmQ3oNcZcdFXchVaTV8 D4KVndF0I9jyS/F7kKvsPKQLuSrtA+5BsLLDhy4Eq7IJuQe5ypz93chVYQd0D4KVete7kKzK9qsz wRbs6t4Aes0wfiNJYWMnFKvtz+Y74Pv2XNfkoh8+6tpM9MIbXZOLfvidazLREw9zbS764EuuyURP vMY1ueiHf7g2E/3wBNdk4yY+3ysrAP5+enKsza8+qbkMaPkEO5vtuPjyYHLF8dBMRyuwl/uA79xs 9dDuEXdveJcuOlo+A+8N89K1SruH5L3hXbrEafkUvTfMS1dG7R6z94Z36YKq5XP43jAvXYe1e1Df G96ly7eWT/J7w7x81dfuUX+7zBctFvFrXiG+kG+D3wOn727HGTp7CHgTP+tOsmz2niVvKPexsjQ1 vpsxt0j6QbG05LnX0IKR/s2iT1OwRN6zUIhgpReSC2V8HsGr4/qcwD7uk7dWy0sBiVx8217soyvv o9ACvv4x6YespdzHhYPNhrgQM08oy2TEKklkQS+GJXmub0OwJ6G8M9Kz74gzEb++93O097C70t2c U0/wvRqhtl2b3WqIo3dfsQT8FBdq2bX1OIubBhY/UuNzcIxS+49fDnv+EfsFYcazSnKYiYxNISCZ ZOzYVZzj1XCRKw7WBJJ2pAfQRWxbTDsCGEHLjS5uhuXfMWRuhs0kJx+hXd43O056c4IIAAQ0C+WG erRO/MJUZfW99RTzgq/pTA0wMVUIDrxOPmYY5jJpiQ8VbMTB9MKokaGxNhFSDxmJ5eDnzal6iLcJ C0+UjGfxczXi429G/Dr9qAhXEfkdsPCj2+SX1IvYmOtUhqROrIWjfDXkGrq3wrgqUT1ZOq4wpZ7Z h9JFLgQFHonNZ9qI0/kQE+f8C1BLAwQUAAAACABTXi1A9YVcBF8BAAAzAwAACAAcAG1ldGEueG1s VVQJAAONGhBPjhoQT3V4CwABBOgDAAAE6AMAAI1SQW6DMBC85xWIa4VtSKQGC5xTcu2h6QMcs6Fu wEbGlPT3jQ2ktEVqLWRpNTM7s4uz3bWugncwrdQqD2NEwgCU0IVUZR6+HA/RNtyxVeBOps9nKYAW WnQ1KBvVYPkAuXNrpFo6cPKwM4pq3sqWKl5DS62gugE1aemcTZ3tz0bXSqpLHr5a21CM+75H/Rpp U+I4TVPs0V+aQtwFTWcqTy8EhgqcZ4tjFONfIjfFf/M67mJarfXd2umGwXyAhJANHuqZbJx8tvkk ZBM8bdrZsVVWCCoMcKsN2xspgufgYHjJMzwDVpnPJpW0klfRMn+R4vsX3AJLSJxEJI5IeiSE+u/B 397JU0Ybr73ljv7SLbDHFiUoMD7AkymjR7RFZI33NRdtlGwQQWmC4lH/RR21F/jotSnYiE+ln6Tt Tm8gLPOZp8IjVtoKGFx53VRw6kr3dzxrAG7Lz/B88ffq24Nnn1BLAwQUAAAACABTXi1AZr9QCd4J AAAKXAAACwAcAGNvbnRlbnQueG1sVVQJAAOOGhBPjhoQT3V4CwABBOgDAAAE6AMAAO1cW3PbNhZ+ rn8Flp3tw+5SpGQnsbWxOnHitOnY2Z1YnelbByIhCRuSYEHQsvbX7wFAUryKtCXZSpdOopjAuX7n 4OBCUm9/fPA9dE94RFlwaQwHtoFI4DCXBotL49fpR/Pc+HFy8vYvponuCEFEOBbjC+vL9bsPt9do zjhyWLjmdLEUiAZw7WMBopBpAhebz6lDxi5zYp8EwnRYIOD/EwQ/oDeIxpri0oh5MGY4otE4wD6J xsIZs5AEKec4Tz2WVuZkRGLtdRahiMsSBHkQXQVI2go/nnW3QBGXJbgcr7oKkLQQnrKIOesq4CHy zDmDaPghBKvGmgePBl8vjaUQ4diyVqvVYHU6kGEfXlxcWKq3YLyT0YYx9xSl61jEI1JpZA0HQytP 7xOBu9oqacvmBbE/I7wzXFjg2qhH94vOWXO/2AKXs8S8c/4o4mr4T93u4T91y/ww6JYN8Tq3bqFT fdzeFPOF+111StoKfA6nYWe3NXVZBmMsM1sy6QGuTB/Z9pmlr0scq60sK04F4SUWZyuLgz2nEA3m 14EJtEMLKExyL9O6MGAkQFED08jS3QWGyG1U8dvtzZ2zJD4uMtB2BpMGkcBBETEug9To/SuLk5Bx UQBs3r0gQ0RHBTuZK5orB3QWUpASL837zLJEIXkICadSF/ZkCE0/AvcgtCwc57hVRkmJCXNuKhsZ E9Clpi6dfZGalaApoU1arclJSjeHCQrNsUOQSxwPczWXldkkkSmJTEkUTZRDb3WJyfqQvpa+XBpT vGQ+HhoI6khK4lNvnfYYVgchDos5hcyuCkl6/oF8FrAoBMZOAt9xij30a0Bhuifo9q5G8g84ZNE/ y4S61UA54SEVDlSgewykUCE76f/5J3RLA2fJ0I1aPvzSaECFck8WTJeMBy4G6prI5PryImSvuSAB JCdUFQ7RC3a3A/I8Qp/JCn1J5NXjUKKrQeEw9r3zZjhY15iVdTRbEK1oFO1swR317+I6YLKOLRas I0H83YOkh2rjGN6HCW+tphqTVigcCyaX2I6WVa5NWbepuwt+qc+CT//ii6nSnlqWuKTWqIZmzthV oxlCASZcUFCtmznxzBV15QLkwv6rATUUliN8QQNTsPDSsB0/3zZjQsjp1R6MVI9eDWOPLqBmO0QW +CwaVs5shUAHT94zL/aDWn9gBaf6at3SffXeJX2Jk8O/PdnAmfeeeF6DcbKn3jToqRp2L69g5WIm 2AHYCucQu3rzZg+Gry4S8GeMu4TrgAQsIPnGNCLldo/MRbVV7fSS5noYOqJwswWGpCfEXO4a1YVZ QbETVvsHxB7Ais7xUcQ86qLvbfVzEIS+fKMINaRMPXC75dC3ClHXJDoAZtOjgawVhBeqTNPjKU07 QvR8tWp6PCPxMGl1iJF4ROXrmRLtACheHQ2GTVNAKzgHrmdXx1PPdoTo+erZ1fEMzcOk1SFG4hHV s2dKtEPMCsdT0DpPCi9d4aZHVOL2DdozruGOqOg9U+odZPweURl8qWR8DK66TZ5tXl3/9OnzGKlz vPR4Uz5hoO/3EheRP+LCHZntAblOqPd0uDm0D3m62dWZlz7kbLPzI+WRSI1VF9pYbffBTj996roe +TYOQFN0bnAPTiM45dT5N+Z4wXG4LEMUljtqSquS8PvI/v29fgApKqOZCSkVWPmwj1kcvomW/8SR oPO1GQGaoGcF/l8ac+xFe86Kl/ebBO5uTsvSfv35Q/fCXpkR3oNe5if8U+KHHhakfQ7QbHsq/+ey +u/rbpW27MXvVUmINahZmqE7HZ6O4B5JjkYCc9E9Szd4ShlFsQAg45dGtrbJEbJYeDQgqbB8l2w3 xZKzeLHU7qXFMUFE3s9tuNkPSlV3RP8L3cNRKHJtqSjuY8/I3I6W2JXPQeVVqI44gDKsjCkYkYpb kbRAa3k546R2E0cUB6kN+U4VsKS3hlnL3UKgpMsn6Dzy0Cg/62/W0ECiw3Nf53odQRJjJVj9vsMg lvX6C1v1A6EfCP1AOKqFSz8W+rHwQmNB7V7+1LPCXP30I6EfCR1Gwp99WugHQz8YyjtqeZz3lM30 4Z8QnWHn6wKyL3DNcgIXTwjtizfFE8J93ATY8y2Kycl3CRQ5t6iPF2Qzfq0tWO1nin+RoEn/z+0+ aI/co7xozBz108dshxXEi8TtzJV/+rg9/TygH27HErbsfkzzbZX8q0jVV4py7xvNmLtOVCUtcvWU Wahelo/IHzEJNq8yfVfTjFSTSyOwYZ0uniEu98QDhAzdrbPrk+eB3frVTLkW21HcNH37alc58Ose xHzQL/fvQVL2+MPuoj7SRczzOyKrNrCbkIeaO793k4+3UCHvvGkSIS8m5AHLRfosXsi3hBO5uiu5 CCftIq2tNHfxTOQ104AKCuXD4QQLxifXnDroDn2ErSNOlJZJOtmS6XmcOa4cdHqYyq8qKGx4P795 lQRCUpn32IuhdWQPR6Y9NO2LqW2P1d+/q09jYl+gX3CAJEVis2R8tP0nuVjq8sLm6bd3VHnviCNG iZ1QgQRcEthGCx6T6lBDbI7S7fswLfv1msyIxdwhWkQpQU+NYpGhsJl9MJX9pkhLWcXSVLE8Q/iZ YDkhGJOKWVkSVEUmyDRaDP/4umRAyfKhsd2uDJSia1qy/OoNU51gVIV8krejAyKkEPUVHdYWQc4S h0C+jUQ2bOtXtpDALZeFFlD2AOGoBcJRD2EbhKctEJ72ELZBeNYC4VkPYRuEr1ogfNVD2Abh6xYI X/cQtkH4pgXCNz2EbRCet0B43kPYBuFFC4QXPYStS2u7bW1t/5+A2EStd1QZVU7t5iSnZktVv+cb tuzu1BarDHjN3vNRu7KwBEjOSnCrk45huvXGSH2X4VisQyCJqDyKMJK2JSfzS+P7iDgm+DkZDvTD vxGiAfJolNmDN5vrIvZlWBtCAlyp2cuq2Qkc2uqG7WTizIyxrz7mhQzO9va/gTcD7YtVos9TphRl V4sKIC23iteOLpVniWtSjOaRbtMgBgfVw9/qSDa5R17xHiRfxZ5HBHFvQIAxyYszKST9tpBPoUEC J0MArNMljRCW33W6RjrUyjkQsIlf8mtV/NMUEgSYMEBLDVK0xNIAhW1BqxSpHixXn8lD5lpk+sh5 +dgreYY9z5c8+r2FIXne3Ho6X5FxCckpj8XZKiqJhKZJUYe8G16vIf1aku3nfJI1GQxf5DG8MRHU J5tzLausrWzsISyAoks4FjHfbkixTWJzUmorIFmB8nnQTStk4pz93NiW9A/t7RbUgLojSE+wcZ8Y PV79uT14ZoiuHm/kaJ8YPUH/67NHg1Rti8qNh5grxJJyF7GAIJfB5BswMWidnDZNeh6xCnfhNtd6 GbK5Ln8l9+Tkf1BLAwQKAAAAAABTXi1AAAAAAAAAAAAAAAAACQAcAE1FVEEtSU5GL1VUCQADjhoQ T44aEE91eAsAAQToAwAABOgDAABQSwMEFAAAAAgAU14tQLmL3xvKAAAANQIAABUAHABNRVRBLUlO Ri9tYW5pZmVzdC54bWxVVAkAA44aEE+OGhBPdXgLAAEE6AMAAAToAwAAlVFLCsIwEN33FCX7JupK gqk7T6AHCOlUA8kkNFOxtzcVrBU/0FnNwPsyu/3Nu/IKXbIBFVvzFSsBTWgsnhU7HQ/Vlu3rohxn 5zXaFhLJ51JmMqbpVKzvUAadbJKoPSRJRoYI2ATTe0CS73j5sJuuWYoNq4vi5ddaB1Xmd8ML7aGx uqIhgmIENxJZeybW9s5VUdNFMROQMpmPAFEvkNUxOms05VDiig1/NOPzQnx0/u4qfjVbFOF/s0SD g7S82H9VD6QnTfHx9Lq4A1BLAQIeAwoAAAAAAFNeLUBexjIMJwAAACcAAAAIAAAAAAAAAAAAAACk gQAAAABtaW1ldHlwZVBLAQIeAxQAAAAIAFNeLUAdHgaUxhUAAJ/uAAAKABgAAAAAAAEAAACkgU0A AABzdHlsZXMueG1sVVQFAAOOGhBPdXgLAAEE6AMAAAToAwAAUEsBAh4DFAAAAAgAU14tQPWFXARf AQAAMwMAAAgAGAAAAAAAAQAAAKSBVxYAAG1ldGEueG1sVVQFAAONGhBPdXgLAAEE6AMAAAToAwAA UEsBAh4DFAAAAAgAU14tQGa/UAneCQAAClwAAAsAGAAAAAAAAQAAAKSB+BcAAGNvbnRlbnQueG1s VVQFAAOOGhBPdXgLAAEE6AMAAAToAwAAUEsBAh4DCgAAAAAAU14tQAAAAAAAAAAAAAAAAAkAGAAA AAAAAAAQAO1BGyIAAE1FVEEtSU5GL1VUBQADjhoQT3V4CwABBOgDAAAE6AMAAFBLAQIeAxQAAAAI AFNeLUC5i98bygAAADUCAAAVABgAAAAAAAEAAACkgV4iAABNRVRBLUlORi9tYW5pZmVzdC54bWxV VAUAA44aEE91eAsAAQToAwAABOgDAABQSwUGAAAAAAYABgDPAQAAdyMAAAAA --=-=-= Content-Type: text/orgmode Content-Disposition: attachment; filename=examplebug.org #+TITLE: examplebug.org #+AUTHOR: Eric S Fraga #+EMAIL: e.fraga@ucl.ac.uk #+DATE: 2012-01-09 Mon * tables in lists - This a very simple list - The second entry has a table | time | temperature | |------+-------------| | 0 | 100 | | 1 | 80. | | 2 | 64. | #+TBLFM: @3$2=0.8*@-1::@4$2=0.8*@-1 - The third one does not. --=-=-=--