
The Org Manual
Release 9.8

The Org Mode Developers

This manual is for Org version 9.8.

Copyright c© 2004–2024 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual.”

i

Table of Contents

1 Introduction . 1
1.1 Summary . 1
1.2 Installation . 2
1.3 Activation . 3
1.4 Feedback . 3
1.5 Typesetting Conventions Used in this Manual 6

2 Document Structure . 7
2.1 Headlines . 7
2.2 Visibility Cycling . 7

2.2.1 Global and local cycling . 7
2.2.2 Initial visibility . 9
2.2.3 Catching invisible edits . 9

2.3 Motion . 9
2.4 Structure Editing . 10
2.5 Sparse Trees . 12
2.6 Plain Lists . 13
2.7 Drawers . 16
2.8 Blocks . 17

3 Tables . 18
3.1 Built-in Table Editor . 18
3.2 Column Width and Alignment . 22
3.3 Column Groups . 23
3.4 The Orgtbl Minor Mode . 23
3.5 The Spreadsheet . 24

3.5.1 References . 24
3.5.2 Formula syntax for Calc . 26
3.5.3 Emacs Lisp forms as formulas . 28
3.5.4 Durations and time values . 29
3.5.5 Field and range formulas . 30
3.5.6 Column formulas . 30
3.5.7 Lookup functions . 31
3.5.8 Editing and debugging formulas . 31
3.5.9 Updating the table . 34
3.5.10 Advanced features . 34

3.6 Org Plot . 36

ii

4 Hyperlinks . 39
4.1 Link Format . 39
4.2 Internal Links . 40
4.3 Radio Targets . 41
4.4 External Links . 41
4.5 Handling Links . 43
4.6 Using Links Outside Org . 46
4.7 Link Abbreviations . 47
4.8 Search Options in File Links . 47
4.9 Custom Searches . 48

5 TODO Items . 50
5.1 Basic TODO Functionality . 50
5.2 Extended Use of TODO Keywords . 51

5.2.1 TODO keywords as workflow states . 51
5.2.2 TODO keywords as types . 51
5.2.3 Multiple keyword sets in one file . 52
5.2.4 Fast access to TODO states . 53
5.2.5 Setting up keywords for individual files 53
5.2.6 Faces for TODO keywords . 53
5.2.7 TODO dependencies . 54

5.3 Progress Logging . 55
5.3.1 Closing items . 55
5.3.2 Tracking TODO state changes . 55
5.3.3 Tracking your habits . 56

5.4 Priorities . 58
5.5 Breaking Down Tasks into Subtasks . 59
5.6 Checkboxes . 60

6 Tags . 63
6.1 Tag Inheritance . 63
6.2 Setting Tags . 63
6.3 Tag Hierarchy . 66
6.4 Tag Searches . 67

7 Properties and Columns . 68
7.1 Property Syntax . 68
7.2 Special Properties . 70
7.3 Property Searches . 71
7.4 Property Inheritance . 71
7.5 Column View . 72

7.5.1 Defining columns . 72
7.5.1.1 Scope of column definitions . 72
7.5.1.2 Column attributes . 72

7.5.2 Using column view . 74
7.5.3 Capturing column view . 75

iii

8 Dates and Times . 78
8.1 Timestamps . 78
8.2 Creating Timestamps . 79

8.2.1 The date/time prompt . 80
8.2.2 Custom time format . 82

8.3 Deadlines and Scheduling . 83
8.3.1 Inserting deadlines or schedules . 84
8.3.2 Repeated tasks . 85

8.4 Clocking Work Time . 86
8.4.1 Clocking commands . 87
8.4.2 The clock table . 88
8.4.3 Resolving idle time and continuous clocking 92

8.5 Effort Estimates . 93
8.6 Taking Notes with a Relative Timer . 94

9 Refiling and Archiving . 96
9.1 Refile and Copy . 96
9.2 Archiving . 97

9.2.1 Moving a tree to an archive file . 97
9.2.2 Internal archiving . 98

10 Capture and Attachments 99
10.1 Capture . 99

10.1.1 Setting up capture . 99
10.1.2 Using capture . 99
10.1.3 Capture templates . 100

10.1.3.1 Template elements . 100
10.1.3.2 Template expansion . 104
10.1.3.3 Templates in contexts . 106

10.2 Attachments . 106
10.2.1 Attachment defaults and dispatcher . 106
10.2.2 Attachment options . 108
10.2.3 Attachment links . 109
10.2.4 Automatic version-control with Git . 110
10.2.5 Attach from Dired . 110

10.3 RSS Feeds . 110

11 Agenda Views . 112
11.1 Agenda Files . 112
11.2 The Agenda Dispatcher . 113
11.3 The Built-in Agenda Views . 114

11.3.1 Weekly/daily agenda . 114
11.3.2 The global TODO list . 117
11.3.3 Matching tags and properties . 118
11.3.4 Search view . 120
11.3.5 Stuck projects . 121

11.4 Presentation and Sorting . 122

iv

11.4.1 Categories . 122
11.4.2 Time-of-day specifications . 122
11.4.3 Sorting of agenda items . 123
11.4.4 Filtering/limiting agenda items . 123

11.5 Commands in the Agenda Buffer . 126
11.6 Custom Agenda Views . 134

11.6.1 Storing searches . 134
11.6.2 Block agenda . 135
11.6.3 Setting options for custom commands 136

11.7 Exporting Agenda Views . 137
11.8 Using Column View in the Agenda . 139

12 Markup for Rich Contents 141
12.1 Paragraphs . 141
12.2 Emphasis and Monospace . 141
12.3 Subscripts and Superscripts . 142
12.4 Special Symbols . 142
12.5 Embedded LATEX . 143

12.5.1 LATEX fragments . 143
12.5.2 Previewing LATEX fragments . 144
12.5.3 Using CDLATEX to enter math . 145

12.6 Literal Examples . 146
12.7 Images and link previews . 148

12.7.1 Images . 149
12.8 Captions . 150
12.9 Horizontal Rules . 150
12.10 Creating Footnotes . 150

13 Exporting . 152
13.1 The Export Dispatcher . 152
13.2 Export Settings . 154
13.3 Table of Contents . 157
13.4 Include Files . 158
13.5 Macro Replacement . 159
13.6 Comment Lines . 160
13.7 ASCII/Latin-1/UTF-8 export . 161
13.8 Beamer Export . 162

13.8.1 Beamer export commands . 162
13.8.2 Beamer specific export settings . 162
13.8.3 Frames and Blocks in Beamer . 163
13.8.4 Beamer specific syntax . 164
13.8.5 Editing support . 165
13.8.6 A Beamer example . 165

13.9 HTML Export . 166
13.9.1 HTML export commands . 166
13.9.2 HTML specific export settings . 166
13.9.3 HTML doctypes . 167
13.9.4 HTML preamble and postamble . 168

v

13.9.5 Exporting to minimal HTML . 169
13.9.6 Quoting HTML tags . 169
13.9.7 Headlines in HTML export . 169
13.9.8 Links in HTML export . 169
13.9.9 Tables in HTML export . 170
13.9.10 Images in HTML export . 170
13.9.11 Math formatting in HTML export . 171
13.9.12 Text areas in HTML export . 171
13.9.13 CSS support . 172
13.9.14 JavaScript supported display of web pages 173

13.10 LATEX Export . 174
13.10.1 LATEX/PDF export commands . 174
13.10.2 LATEX specific export settings . 175
13.10.3 LATEX header and sectioning structure 176
13.10.4 Quoting LATEX code . 178
13.10.5 Tables in LATEX export . 178
13.10.6 Images in LATEX export . 180
13.10.7 Plain lists in LATEX export . 181
13.10.8 Source blocks in LATEX export . 181
13.10.9 Example blocks in LATEX export . 182
13.10.10 Special blocks in LATEX export . 182
13.10.11 Horizontal rules in LATEX export . 183
13.10.12 Verse blocks in LATEX export . 183
13.10.13 Quote blocks in LATEX export . 184

13.11 Markdown Export . 184
13.12 OpenDocument Text Export . 185

13.12.1 Pre-requisites for ODT export . 185
13.12.2 ODT export commands . 185
13.12.3 ODT specific export settings . 186
13.12.4 Extending ODT export . 186
13.12.5 Applying custom styles . 187
13.12.6 Links in ODT export . 187
13.12.7 Tables in ODT export . 187
13.12.8 Images in ODT export . 188
13.12.9 Math formatting in ODT export . 189

13.12.9.1 LATEX math snippets . 189
13.12.9.2 MathML and OpenDocument formula files 190

13.12.10 Labels and captions in ODT export 190
13.12.11 Literal examples in ODT export . 191
13.12.12 Advanced topics in ODT export . 191

13.13 Org Export . 196
13.14 Texinfo Export . 196

13.14.1 Texinfo export commands . 196
13.14.2 Texinfo specific export settings . 196
13.14.3 Texinfo file header . 197
13.14.4 Texinfo title and copyright page . 197
13.14.5 Info directory file . 198
13.14.6 Headings and sectioning structure . 198

vi

13.14.7 Indices . 199
13.14.8 Quoting Texinfo code . 199
13.14.9 Plain lists in Texinfo export . 199
13.14.10 Tables in Texinfo export . 201
13.14.11 Images in Texinfo export . 201
13.14.12 Quotations in Texinfo export . 201
13.14.13 Key bindings in Texinfo export . 202
13.14.14 Special blocks in Texinfo export . 202
13.14.15 A Texinfo example . 202

13.15 iCalendar Export . 204
13.16 Other Built-in Backends . 206
13.17 Advanced Export Configuration . 206
13.18 Export Region . 211

14 Publishing . 212
14.1 Configuration . 212

14.1.1 The variable org-publish-project-alist 212
14.1.2 Sources and destinations for files . 212
14.1.3 Selecting files . 213
14.1.4 Publishing action . 213
14.1.5 Options for the exporters . 214
14.1.6 Publishing links . 219
14.1.7 Generating a sitemap . 219
14.1.8 Generating an index . 220

14.2 Uploading Files . 220
14.3 Sample Configuration . 221

14.3.1 Example: simple publishing configuration 221
14.3.2 Example: complex publishing configuration 221

14.4 Triggering Publication . 222

15 Citation handling . 223
15.1 Citations . 224
15.2 Citation export processors . 225
15.3 Bibliography printing . 226

15.3.1 Bibliography options in the ‘biblatex’ and ‘csl’ export
processors . 226

16 Working with Source Code 228
16.1 Features Overview . 228
16.2 Structure of Code Blocks . 229
16.3 Using Header Arguments . 230
16.4 Environment of a Code Block . 233
16.5 Evaluating Code Blocks . 239
16.6 Results of Evaluation . 242
16.7 Exporting Code Blocks . 247
16.8 Extracting Source Code . 248
16.9 Languages . 251

vii

16.10 Editing Source Code . 251
16.11 Noweb Reference Syntax . 252
16.12 Library of Babel . 256
16.13 Key bindings and Useful Functions . 256
16.14 Batch Execution . 257

17 Miscellaneous . 258
17.1 Completion . 258
17.2 Structure Templates . 258
17.3 Speed Keys . 259
17.4 A Cleaner Outline View . 259

17.4.1 Org Indent Mode . 260
17.4.2 Hard indentation . 260

17.5 Execute commands in the active region . 261
17.6 Dynamic Headline Numbering . 261
17.7 The Very Busy C-c C-c Key . 261
17.8 Summary of In-Buffer Settings . 262
17.9 Regular Expressions . 265
17.10 Org Syntax . 265
17.11 Context Dependent Documentation . 266
17.12 Escape Character . 266
17.13 Code Evaluation and Security Issues . 266
17.14 Interaction with Other Packages . 267

17.14.1 Packages that Org cooperates with . 267
17.14.2 Packages that conflict with Org mode 268

17.15 Using Org on a TTY . 270
17.16 Protocols for External Access . 271

17.16.1 The store-link protocol . 271
17.16.2 The capture protocol . 271
17.16.3 The open-source protocol . 272

17.17 Org Crypt . 273
17.18 Org Mobile . 274

17.18.1 Setting up the staging area . 274
17.18.2 Pushing to the mobile application . 275
17.18.3 Pulling from the mobile application 275

17.19 Drag and Drop & yank-media . 276
17.20 Repeating commands . 276

Appendix A Hacking . 278
A.1 Hooks . 278
A.2 Add-on Packages . 278
A.3 Adding Hyperlink Types . 278
A.4 Adding Hyperlink preview . 280
A.5 Adding Export Backends . 280
A.6 Tables in Arbitrary Syntax . 281

A.6.1 Radio tables . 281
A.6.2 A LATEX example of radio tables . 282
A.6.3 Translator functions . 283

viii

A.7 Dynamic Blocks . 284
A.8 Special Agenda Views . 285
A.9 Speeding Up Your Agendas . 287
A.10 Extracting Agenda Information . 287
A.11 Using the Property API . 289
A.12 Using the Mapping API . 290

Appendix B History and Acknowledgments
. 292

B.1 From Carsten . 292
B.2 From Bastien . 293
B.3 List of Contributions . 293

Appendix C GNU Free Documentation License
. 297

C.1 ADDENDUM: How to use this License for your documents . . . 304

18 Main Index . 305

19 Key Index . 314

20 Command and Function Index 319

21 Variable Index . 323

Chapter 1: Introduction 1

1 Introduction

1.1 Summary

Org Mode is an authoring tool and a TODO lists manager for GNU Emacs. It relies on a
lightweight plain-text markup language used in files with the ‘.org’ extension.

Authoring Org files is best supported by Emacs, but you can view, understand, and
change them with any text editor.

As an authoring tool, Org helps you write structured documents and provides exporting
facilities. Org files can also be used for literate programming and reproducible research. As
a TODO lists manager, Org helps you organize your tasks in a flexible way, from daily needs
to detailed project-planning, allowing logging, multiple views on your tasks, exporting your
agendas, etc.

Org mode is implemented on top of Outline mode, which makes it possible to keep the
content of large files well-structured. Visibility cycling and structure editing help to work
with the tree. Tables are easily created with a built-in table editor. Plain text URL-like
links connect to websites, emails, Usenet messages, BBDB entries, and any files related to
the projects.

Org develops organizational tasks around notes files that contain lists or information
about projects as plain text. Project planning and task management make use of metadata
which is part of an outline node. Based on this data, specific entries can be extracted in
queries and create dynamic agenda views that also integrate the Emacs calendar and diary.
Org can be used to implement many different project planning schemes, such as David
Allen’s GTD system.

Org files can serve as a single source authoring system with export to many different
formats such as HTML, LATEX, Open Document, and Markdown. New export backends can
be derived from existing ones, or defined from scratch.

Org files can include source code blocks, which makes Org uniquely suited for authoring
technical documents with code examples. Org source code blocks are fully functional; they
can be evaluated in place and their results can be captured in the file. This makes it possible
to create a single file reproducible research compendium.

Org keeps simple things simple. When first fired up, it should feel like a straightforward,
easy to use outliner. Complexity is not imposed, but a large amount of functionality is
available when needed. Org is a toolbox. Many users actually run only a—very personal—
fraction of Org’s capabilities, and know that there is more whenever they need it.

All of this is achieved with strictly plain text files, the most portable and future-proof
file format. Org runs in Emacs. Emacs is one of the most widely ported programs, so that
Org mode is available on every major platform.

There is a website for Org which provides links to the newest version of Org, as well as
additional information, frequently asked questions (FAQ), links to tutorials, etc. This page
is located at https://orgmode.org.

An earlier version (7.3) of this manual was available as a paperback book from the
Network Theory Ltd. publishing company, closed in 2009.

https://orgmode.org

Chapter 1: Introduction 2

1.2 Installation

Org is included in distributions of GNU Emacs, you probably do not need to install it. Most
users will simply activate Org and begin exploring its features.

If, for one reason or another, you want to install Org on top of this pre-packaged ver-
sion, you can use the Emacs package system or clone Org’s git repository. We strongly
recommend sticking to a single installation method.

When installing Org on top of the pre-packaged version, please note that Org stable
versions are meant to be fully compatible with the last three stable versions of Emacs but
not with older Emacsen.

Some Org components also depend on third-party packages available through package
archives. Org is only guaranteed to be compatible with the latest stable versions of these
third-party packages.

Using Emacs packaging system

Recent Emacs distributions include a packaging system which lets you install Elisp libraries.
You can install Org from the “package menu”, with M-x list-packages. See Section “Pack-
age Menu” in emacs.

Important: You need to do this in a session where no ‘.org’ file has been visited,
i.e., where no Org built-in function have been loaded. Otherwise, autoload Org
functions will mess up the installation.

To avoid interference with built-in Org mode, you can use command line:

emacs -Q -batch -eval "(progn (require 'package) (package-initialize) (package-refresh-contents) (package-upgrade 'org))"

This approach has the advantage of isolating the upgrade process from a running Emacs
session, ensuring that version conflicts can not arise.

Using Org’s git repository

You can clone Org’s repository and install Org like this:

$ cd ~/src/

$ git clone https://git.savannah.gnu.org/git/emacs/org-mode.git

$ cd org-mode/

$ make autoloads

Note that in this case, ‘make autoloads’ is mandatory: it defines Org’s version in
‘org-version.el’ and Org’s autoloads in ‘org-loaddefs.el’.

Make sure you set the load path correctly in your Emacs init file:

(add-to-list 'load-path "~/src/org-mode/lisp")

You can also compile with ‘make’, generate the documentation with ‘make doc’, create
a local configuration with ‘make config’ and install Org with ‘make install’. Please run
‘make help’ to get the list of compilation/installation options.

For more detailed explanations on Org’s build system, please check the Org Build System
page on Worg.

https://orgmode.org/worg/dev/org-build-system.html

Chapter 1: Introduction 3

Installing Org’s contributed packages

Org’s repository used to contain ‘contrib/’ directory for add-ons contributed by others.
As of Org 9.5, the directory has been moved to the dedicated org-contrib repository, which
you can install separately as a package from NonGNU ELPA.

There are enough valuable packages maintained outside the Org repository. Worg has a
list of org-contrib and external packages, certainly it is not exhaustive.

1.3 Activation

Org mode buffers need Font Lock to be turned on: this is the default in Emacs1.

There are compatibility issues between Org mode and some other Elisp packages (see
Section 17.14.2 [Conflicts], page 268). Please take the time to check the list.

For a better experience, the three Org commands org-store-link, org-capture and
org-agenda ought to be accessible anywhere in Emacs, not just in Org buffers. To that
effect, you need to bind them to globally available keys, like the ones reserved for users (see
Section “Key Binding Conventions” in elisp). Here are suggested bindings, please modify
the keys to your own liking in your Section “Init File” in emacs.

(global-set-key (kbd "C-c l") #'org-store-link)

(global-set-key (kbd "C-c a") #'org-agenda)

(global-set-key (kbd "C-c c") #'org-capture)

Files with the ‘.org’ extension use Org mode by default. To turn on Org mode in a file
that does not have the extension ‘.org’, make the first line of a file look like this:

MY PROJECTS -*- mode: org; -*-

which selects Org mode for this buffer no matter what the file’s name is. See also the
variable org-insert-mode-line-in-empty-file.

Many commands in Org work on the region if the region is active. To make use of this,
you need to have Transient Mark mode turned on, which is the default. If you do not like
it, you can create an active region by using the mouse to select a region, or pressing C-SPC

twice before moving point.

1.4 Feedback

If you find problems with Org, or if you have questions, remarks, or ideas about it, please
send an email to the Org mailing list mailto:emacs-orgmode@gnu.org. You can subscribe
to the list from this web page. If you are not a member of the mailing list, your mail will be
passed to the list after a moderator has approved it2. We ask you to read and respect the
GNU Kind Communications Guidelines when sending messages on this mailing list. Please
allow up to one month for the response and follow up if no response is received on the bug
report.

For bug reports, please first try to reproduce the bug with the latest version of Org
available—if you are running an outdated version, it is quite possible that the bug has been

1 If you do not use Font Lock globally turn it on in Org buffer with ‘(add-hook 'org-mode-hook

#'turn-on-font-lock)’.
2 Please consider subscribing to the mailing list in order to minimize the work the mailing list moderators

have to do.

https://git.sr.ht/~bzg/org-contrib
https://elpa.nongnu.org/nongnu/org-contrib.html
https://orgmode.org/worg/org-contrib/index.html
mailto:mailto:emacs-orgmode@gnu.org
https://lists.gnu.org/mailman/listinfo/emacs-orgmode
https://www.gnu.org/philosophy/kind-communication.html

Chapter 1: Introduction 4

fixed already. If the bug persists, prepare a report and provide as much information as
possible, including the version information of Emacs (M-x emacs-version) and Org (M-x
org-version), as well as the Org related setup in the Emacs init file. The easiest way to
do this is to use the command

M-x org-submit-bug-report <RET>

which puts all this information into an Emacs mail buffer so that you only need to add your
description. If you are not sending the Email from within Emacs, please copy and paste
the content into your Email program.

Sometimes you might face a problem due to an error in your Emacs or Org mode setup.
Before reporting a bug, it is very helpful to start Emacs with minimal customizations and
reproduce the problem. Doing so often helps you determine if the problem is with your
customization or with Org mode itself. You can start a typical minimal session with a
command like the example below.

$ emacs -Q -l /path/to/minimal-org.el

However, if you are using Org mode as distributed with Emacs, a minimal setup is not
necessary. In that case it is sufficient to start Emacs as ‘emacs -Q’. The ‘minimal-org.el’
setup file can have contents as shown below.

;;; Minimal setup to load latest `org-mode'.

;; Activate debugging.

(setq debug-on-error t

debug-on-signal nil

debug-on-quit nil)

;; Add latest Org mode to load path.

(add-to-list 'load-path (expand-file-name "/path/to/org-mode/lisp"))

If you are using Org mode version from Git repository, you can start minimal session
using make.

Bare Emacs

make repro

or pass extra arguments

make repro REPRO_ARGS="-l /path/to/minimal/config.el /tmp/bug.org"

If an error occurs, a “backtrace” can be very useful—see below on how to create one.
Often a small example file helps, along with clear information about:

1. What exactly did you do?

2. What did you expect to happen?

3. What happened instead?

If you experience degraded performance, you can record a “profile” and share it on the
Org mailing list. See below for the instructions how to record a useful profile.

Thank you for helping to improve this program.

How to create a useful backtrace

If working with Org produces an error with a message you do not understand, you may have
hit a bug. The best way to report this is by providing, in addition to what was mentioned

Chapter 1: Introduction 5

above, a backtrace. This is information from the built-in debugger about where and how
the error occurred. Here is how to produce a useful backtrace:

1. Reload uncompiled versions of all Org mode Lisp files. The backtrace contains much
more information if it is produced with uncompiled code. To do this, use

C-u M-x org-reload <RET>

or, from the menu: Org → Refresh/Reload → Reload Org uncompiled.

2. Then, activate the debugger:

M-x toggle-debug-on-error <RET>

or, from the menu: Options → Enter Debugger on Error.

3. Do whatever you have to do to hit the error. Do not forget to document the steps you
take.

4. When you hit the error, a ‘*Backtrace*’ buffer appears on the screen. Save this buffer
to a file—for example using C-x C-w—and attach it to your bug report.

How to profile Org performance

Sometimes, Org is becoming slow for no apparent reason. Such slowdown is often caused
by interaction between third-party packages and Org mode. However, identifying the root
cause is not always straightforward.

Emacs is able to record performance statistics, which can then be used to find out which
functions are taking most of the time to execute. To record the statistics, one can use
so-called profiler. To use the Emacs profiler, we recommend the following steps:

1. Make sure that no profiler is currently active:

M-x profiler-stop <RET>

2. Start a new CPU profiler session:

M-x profiler-start <RET> cpu <RET>

3. Use Emacs as usual, performing the actions that are deemed slow.

4. Display and examine the recorded performance statistics:

M-x profiler-report <RET>

This command will display a summary of the commands and functions that have been
executed between profiler-start and profiler-report invocations, with command
taking most of the time displayed on top.

‘<TAB>’ key can be used to fold and unfold lines in the profiler buffer. The child items
revealed upon unfolding are the functions and commands called by the unfolded parent.

The root causes are often buried deep inside sub-children items in the profiler. You can
press ‘B’ (profiler-report-render-reversed-calltree) to quickly reveal the actual
function/command that takes most of the time to run.

Pressing ‘C’ profiler-report-render-calltree will recover the original view.

5. If you need further help, you can share the statistics data.

Just save the data by issuing

M-x profiler-report-write-profile <RET>

/path/to/profile-file-to-be-saved <RET>

Chapter 1: Introduction 6

Then, you can attach the saved file to your email to the Org mailing list, alongside
with details about what you did to trigger the slowdown.

Note that the saved statistics will only contain the function names and how long their
execution takes. No private data will be recorded.

1.5 Typesetting Conventions Used in this Manual

TODO keywords, tags, properties, etc.

Org uses various syntactical elements: TODO keywords, tags, property names, keywords,
blocks, etc. In this manual we use the following conventions:

‘TODO’, ‘WAITING’
TODO keywords are written with all capitals, even if they are user-defined.

‘boss’, ‘ARCHIVE’
Tags are case-sensitive. User-defined tags are usually written in lowercase;
built-in tags with special meaning are written as they should appear in the
document, usually with all capitals.

‘Release’, ‘PRIORITY’
User-defined properties are capitalized; built-in properties with special meaning
are written with all capitals.

‘TITLE’, ‘BEGIN’ . . . ‘END’
Keywords and blocks are written in uppercase to enhance their readability, but
you can use lowercase in your Org files.

Key bindings and commands

The manual lists both the keys and the corresponding commands for accessing a function-
ality. Org mode often uses the same key for different functions, depending on context.
The command that is bound to such keys has a generic name, like org-metaright. In the
manual we will, wherever possible, give the function that is internally called by the generic
command. For example, in the chapter on document structure, M-RIGHT will be listed to
call org-do-demote, while in the chapter on tables, it will be listed to call org-table-
move-column-right.

Chapter 2: Document Structure 7

2 Document Structure

Org is an outliner. Outlines allow a document to be organized in a hierarchical structure,
which, least for me, is the best representation of notes and thoughts. An overview of this
structure is achieved by folding, i.e., hiding large parts of the document to show only the
general document structure and the parts currently being worked on. Org greatly simplifies
the use of outlines by compressing the entire show and hide functionalities into a single
command, org-cycle, which is bound to the TAB key.

2.1 Headlines

Headlines define the structure of an outline tree. Org headlines start on the left margin1

with one or more stars followed by a space. For example:

* Top level headline

** Second level

*** Third level

some text

*** Third level

more text

* Another top level headline

The name defined in org-footnote-section is reserved. Do not use it as a title for
your own headings.

Some people find the many stars too noisy and would prefer an outline that has white-
space followed by a single star as headline starters. This can be achieved using an Org
Indent minor mode. See Section 17.4 [Clean View], page 259 for more information.

Headlines are not numbered. However, you may want to dynamically number some, or
all, of them. See Section 17.6 [Dynamic Headline Numbering], page 261.

An empty line after the end of a subtree is considered part of it and is hidden when the
subtree is folded. However, if you leave at least two empty lines, one empty line remains
visible after folding the subtree, in order to structure the collapsed view. See the variable
org-cycle-separator-lines to modify this behavior.

2.2 Visibility Cycling

2.2.1 Global and local cycling

Outlines make it possible to hide parts of the text in the buffer. Org uses just two commands,
bound to TAB and S-TAB to change the visibility in the buffer.

TAB (org-cycle)
Subtree cycling : Rotate current subtree among the states

,-> FOLDED -> CHILDREN -> SUBTREE --.

'-----------------------------------'

1 See the variables org-special-ctrl-a/e, org-special-ctrl-k, and org-ctrl-k-protect-subtree to
configure special behavior of C-a, C-e, and C-k in headlines. Note also that clocking only works with
headings indented less than 30 stars.

Chapter 2: Document Structure 8

Point must be on a headline for this to work2.

S-TAB (org-global-cycle), C-u TAB

Global cycling : Rotate the entire buffer among the states

,-> OVERVIEW -> CONTENTS -> SHOW ALL --.

'--------------------------------------'

When S-TAB is called with a numeric prefix argument N, view contents only up
to headlines of level N.

Note that inside tables (see Chapter 3 [Tables], page 18), S-TAB jumps to the
previous field instead.

You can run global cycling using TAB only if point is at the very beginning of
the buffer, but not on a headline, and org-cycle-global-at-bob is set to a
non-nil value.

C-u C-u TAB (org-cycle-set-startup-visibility)
Switch back to the startup visibility of the buffer (see Section 2.2.2 [Initial
visibility], page 9).

C-u C-u C-u TAB (org-show-all)
Show all, including drawers.

C-c C-r (org-reveal)
Reveal context around point, showing the current entry, the following heading
and the hierarchy above. It is useful for working near a location that has been
exposed by a sparse tree command (see Section 2.5 [Sparse Trees], page 12) or
an agenda command (see Section 11.5 [Agenda Commands], page 126). With a
prefix argument, show, on each level, all sibling headings. With a double prefix
argument, also show the entire subtree of the parent.

C-c C-k (org-show-branches)
Expose all the headings of the subtree, but not their bodies.

C-c TAB (org-show-children)
Expose all direct children of the subtree. With a numeric prefix argument N,
expose all children down to level N.

C-c C-x b (org-tree-to-indirect-buffer)
Show the current subtree in an indirect buffer3. With a numeric prefix argument
N, go up to level N and then take that tree. If N is negative then go up that
many levels. With a C-u prefix, do not remove the previously used indirect
buffer.

C-c C-x v (org-copy-visible)
Copy the visible text in the region into the kill ring.

2 See, however, the option org-cycle-emulate-tab.
3 The indirect buffer contains the entire buffer, but is narrowed to the current tree. Editing the indirect

buffer also changes the original buffer, but without affecting visibility in that buffer. For more information
about indirect buffers, see Section “Indirect Buffers” in emacs.

Chapter 2: Document Structure 9

2.2.2 Initial visibility

When Emacs first visits an Org file, the global state is set to showeverything, i.e., all file
content is visible4. This can be configured through the variable org-startup-folded, or
on a per-file basis by adding one of the following lines anywhere in the buffer:

#+STARTUP: overview

#+STARTUP: content

#+STARTUP: showall

#+STARTUP: show2levels

#+STARTUP: show3levels

#+STARTUP: show4levels

#+STARTUP: show5levels

#+STARTUP: showeverything

Furthermore, any entries with a ‘VISIBILITY’ property (see Chapter 7 [Properties and
Columns], page 68) get their visibility adapted accordingly. Allowed values for this property
are ‘folded’, ‘children’, ‘content’, and ‘all’.

C-u C-u TAB (org-cycle-set-startup-visibility)
Switch back to the startup visibility of the buffer, i.e., whatever is requested by
startup options and ‘VISIBILITY’ properties in individual entries.

2.2.3 Catching invisible edits

Sometimes you may inadvertently edit an invisible part of the buffer and be confused on
what has been edited and how to undo the mistake. By default, Org prevents such edits
for a limited set of user commands. Users can control which commands are affected by
customizing org-fold-catch-invisible-edits-commands.

The strategy used to decide if a given edit is dangerous is controlled by org-fold-

catch-invisible-edits. See the docstring of this option on the available strategies. Set
the option to nil to disable catching invisible edits completely.

2.3 Motion

The following commands jump to other headlines in the buffer.

C-c C-n (org-next-visible-heading)
Next heading.

C-c C-p (org-previous-visible-heading)
Previous heading.

C-c C-f (org-forward-heading-same-level)
Next heading same level.

C-c C-b (org-backward-heading-same-level)
Previous heading same level.

C-c C-u (outline-up-heading)
Backward to higher level heading.

4 When org-agenda-inhibit-startup is non-nil, Org does not honor the default visibility state when
first opening a file for the agenda (see Section A.9 [Speeding Up Your Agendas], page 287).

Chapter 2: Document Structure 10

C-c C-j (org-goto)
Jump to a different place without changing the current outline visibility. Shows
the document structure in a temporary buffer, where you can use the following
keys to find your destination:

TAB Cycle visibility.
DOWN / UP Next/previous visible headline.
RET Select this location.
/ Do a Sparse-tree search

The following keys work if you turn off org-goto-auto-isearch

n / p Next/previous visible headline.
f / b Next/previous headline same level.
u One level up.
0 . . . 9 Digit argument.
q Quit.

See also the variable org-goto-interface.

2.4 Structure Editing

M-RET (org-meta-return)
Insert a new heading, item or row.

If the command is used at the beginning of a line, and if there is a heading
or a plain list item (see Section 2.6 [Plain Lists], page 13) at point, the new
heading/item is created before the current line. When used at the beginning of
a regular line of text, turn that line into a heading.

When this command is used in the middle of a line, the line is split and the
rest of the line becomes the new item or headline. If you do not want the line
to be split, customize org-M-RET-may-split-line.

Calling the command with a C-u prefix unconditionally inserts a new heading
at the end of the current subtree, thus preserving its contents. With a double
C-u C-u prefix, the new heading is created at the end of the parent subtree
instead.

C-RET (org-insert-heading-respect-content)
Insert a new heading at the end of the current subtree.

M-S-RET (org-insert-todo-heading)
Insert new TODO entry with same level as current heading. See also the vari-
able org-treat-insert-todo-heading-as-state-change.

C-S-RET (org-insert-todo-heading-respect-content)
Insert new TODO entry with same level as current heading. Like C-RET, the
new headline is inserted after the current subtree.

TAB (org-cycle)
In a new entry with no text yet, the first TAB demotes the entry to become a
child of the previous one. The next TAB makes it a parent, and so on, all the
way to top level. Yet another TAB, and you are back to the initial level.

Chapter 2: Document Structure 11

M-LEFT (org-do-promote), M-RIGHT (org-do-demote)
Promote or demote current heading by one level.

When there is an active region—i.e., when Transient Mark mode is active—
promotion and demotion work on all headlines in the region. To select a region
of headlines, it is best to place both point and mark at the beginning of a line,
mark at the beginning of the first headline, and point at the line just after the
last headline to change.

M-S-LEFT (org-promote-subtree)
Promote the current subtree by one level.

M-S-RIGHT (org-demote-subtree)
Demote the current subtree by one level.

M-UP (org-move-subtree-up)
Move subtree up, i.e., swap with previous subtree of same level.

M-DOWN (org-move-subtree-down)
Move subtree down, i.e., swap with next subtree of same level.

C-c @ (org-mark-subtree)
Mark the subtree at point. Hitting repeatedly marks subsequent subtrees of
the same level as the marked subtree.

C-c C-x C-w (org-cut-subtree)
Kill subtree, i.e., remove it from buffer but save in kill ring. With a numeric
prefix argument N, kill N sequential subtrees.

C-c C-x M-w (org-copy-subtree)
Copy subtree to kill ring. With a numeric prefix argument N, copy the N
sequential subtrees.

C-c C-x C-y (org-paste-subtree)
Yank subtree from kill ring. This does modify the level of the subtree to make
sure the tree fits in nicely at the yank position. The yank level can also be
specified with a numeric prefix argument, or by yanking after a headline marker
like ‘****’. With C-u prefix, force inserting as a sibling. With C-u C-u prefix
argument, force inserting as a child.

C-y (org-yank)
Depending on the variables org-yank-adjusted-subtrees and org-yank-

folded-subtrees, Org’s internal yank command pastes subtrees folded and
in a clever way, using the same command as C-c C-x C-y. With the default
settings, no level adjustment takes place, but the yanked tree is folded unless
doing so would swallow text previously visible. Any prefix argument to this
command forces a normal yank to be executed, with the prefix passed along.
A good way to force a normal yank is C-u C-y. If you use yank-pop after a
yank, it yanks previous kill items plainly, without adjustment and folding.

C-c C-x c (org-clone-subtree-with-time-shift)
Clone a subtree by making a number of sibling copies of it. You are prompted
for the number of copies to make, and you can also specify if any timestamps

Chapter 2: Document Structure 12

in the entry should be shifted. This can be useful, for example, to create a
number of tasks related to a series of lectures to prepare. For more details, see
the docstring of the command org-clone-subtree-with-time-shift.

C-c C-w (org-refile)
Refile entry or region to a different location. See Section 9.1 [Refile and Copy],
page 96.

C-c ^ (org-sort)
Sort same-level entries. When there is an active region, all entries in the region
are sorted. Otherwise, the children of the current headline are sorted. The
command prompts for the sorting method, which can be alphabetically, numer-
ically, by time—first timestamp with active preferred, creation time, scheduled
time, deadline time—by priority, by TODO keyword—in the sequence the key-
words have been defined in the setup—or by the value of a property. Reverse
sorting is possible as well. You can also supply your own function to extract
the sorting key. With a C-u prefix, sorting is case-sensitive.

C-x n s (org-narrow-to-subtree)
Narrow buffer to current subtree.

C-x n b (org-narrow-to-block)
Narrow buffer to current block.

C-x n w (widen)
Widen buffer to remove narrowing.

C-c * (org-toggle-heading)
Turn a normal line or plain list item into a headline—so that it becomes a
subheading at its location. Also turn a headline into a normal line by removing
the stars. If there is an active region, turn all lines in the region into headlines.
If the first line in the region was an item, turn only the item lines into headlines.
Finally, if the first line is a headline, remove the stars from all headlines in the
region.

Note that when point is inside a table (see Chapter 3 [Tables], page 18), the Meta-Cursor
keys have different functionality.

2.5 Sparse Trees

An important feature of Org mode is the ability to construct sparse trees for selected
information in an outline tree, so that the entire document is folded as much as possible,
but the selected information is made visible along with the headline structure above it5.
Just try it out and you will see immediately how it works.

Org mode contains several commands creating such trees, all these commands can be
accessed through a dispatcher:

C-c / (org-sparse-tree)
This prompts for an extra key to select a sparse-tree creating command.

5 See also the variable org-show-context-detail to decide how much context is shown around each
match.

Chapter 2: Document Structure 13

C-c / r or C-c / / (org-occur)
Prompts for a regexp (see Section 17.9 [Regular Expressions], page 265) and
shows a sparse tree with all matches. If the match is in a headline, the headline
is made visible. If the match is in the body of an entry, headline and body
are made visible. In order to provide minimal context, also the full hierarchy
of headlines above the match is shown, as well as the headline following the
match. Each match is also highlighted; the highlights disappear when the buffer
is changed by an editing command, or by pressing C-c C-c6. When called with
a C-u prefix argument, previous highlights are kept, so several calls to this
command can be stacked.

M-g n or M-g M-n (next-error)
Jump to the next sparse tree match in this buffer.

M-g p or M-g M-p (previous-error)
Jump to the previous sparse tree match in this buffer.

For frequently used sparse trees of specific search strings, you can use the variable
org-agenda-custom-commands to define fast keyboard access to specific sparse trees. These
commands will then be accessible through the agenda dispatcher (see Section 11.2 [Agenda
Dispatcher], page 113). For example:

(setq org-agenda-custom-commands

'(("f" occur-tree "FIXME")))

defines the key f as a shortcut for creating a sparse tree matching the string ‘FIXME’.

The other sparse tree commands select headings based on TODO keywords, tags, or
properties and are discussed later in this manual.

To print a sparse tree, you can use the Emacs command ps-print-buffer-with-faces

which does not print invisible parts of the document. Or you can use the command C-c

C-e C-v to export only the visible part of the document and print the resulting file.

2.6 Plain Lists

Within an entry of the outline tree, hand-formatted lists can provide additional structure.
They also provide a way to create lists of checkboxes (see Section 5.6 [Checkboxes], page 60).
Org supports editing such lists, and every exporter (see Chapter 13 [Exporting], page 152)
can parse and format them.

Org knows ordered lists, unordered lists, and description lists.

• Unordered list items start with ‘-’, ‘+’, or ‘*’7 as bullets.

• Ordered list items start with a numeral followed by either a period or a right paren-
thesis8, such as ‘1.’ or ‘1)’9 If you want a list to start with a different value—e.g.,

6 This depends on the option org-remove-highlights-with-change.
7 When using ‘*’ as a bullet, lines must be indented so that they are not interpreted as headlines. Also,

when you are hiding leading stars to get a clean outline view, plain list items starting with a star may
be hard to distinguish from true headlines. In short: even though ‘*’ is supported, it may be better to
not use it for plain list items.

8 You can filter out any of them by configuring org-plain-list-ordered-item-terminator.
9 You can also get ‘a.’, ‘A.’, ‘a)’ and ‘A)’ by configuring org-list-allow-alphabetical. To minimize con-

fusion with normal text, those are limited to one character only. Beyond that limit, bullets automatically
become numbers.

Chapter 2: Document Structure 14

20—start the text of the item with ‘[@20]’10. Those constructs can be used in any
item of the list in order to enforce a particular numbering.

• Description list items are unordered list items, and contain the separator ‘::’ to dis-
tinguish the description term from the description.

Items belonging to the same list must have the same indentation on the first line. In
particular, if an ordered list reaches number ‘10.’, then the 2-digit numbers must be written
left-aligned with the other numbers in the list. An item ends before the next line that is
less or equally indented than its bullet/number.

A list ends whenever every item has ended, which means before any line less or equally
indented than items at top level. It also ends before two blank lines. In that case, all items
are closed. Here is an example:

* Lord of the Rings

My favorite scenes are (in this order)

1. The attack of the Rohirrim

2. Eowyn's fight with the witch king

+ this was already my favorite scene in the book

+ I really like Miranda Otto.

3. Peter Jackson being shot by Legolas

- on DVD only

He makes a really funny face when it happens.

8. [@8] <favorite scenes 4 to 8 are skipped for brevity>

But in the end, no individual scenes matter but the film as a whole.

Important actors in this film are:

- Elijah Wood :: He plays Frodo

- Sean Astin :: He plays Sam, Frodo's friend. I still remember him

very well from his role as Mikey Walsh in /The Goonies/.

Org supports these lists by tuning filling and wrapping commands to deal with them
correctly, and by exporting them properly (see Chapter 13 [Exporting], page 152). Since
indentation is what governs the structure of these lists, many structural constructs like
‘#+BEGIN_’ blocks can be indented to signal that they belong to a particular item.

If you find that using a different bullet for a sub-list—than that used for the current
list-level—improves readability, customize the variable org-list-demote-modify-bullet.
To get a greater difference of indentation between items and theirs sub-items, customize
org-list-indent-offset.

The following commands act on items when point is in the first line of an item—the
line with the bullet or number. Some of them imply the application of automatic rules to
keep list structure intact. If some of these actions get in your way, configure org-list-

automatic-rules to disable them individually.

TAB (org-cycle)
Items can be folded just like headline levels. Normally this works only if point
is on a plain list item. For more details, see the variable org-cycle-include-
plain-lists. If this variable is set to integrate, plain list items are treated

10 If there’s a checkbox in the item, the cookie must be put before the checkbox. If you have activated
alphabetical lists, you can also use counters like ‘[@b]’.

Chapter 2: Document Structure 15

like low-level headlines. The level of an item is then given by the indentation of
the bullet/number. Items are always subordinate to real headlines, however; the
hierarchies remain completely separated. In a new item with no text yet, the
first TAB demotes the item to become a child of the previous one. Subsequent
TABs move the item to meaningful levels in the list and eventually get it back
to its initial position.

M-RET (org-insert-heading)
Insert new item at current level. With a prefix argument, force a new heading
(see Section 2.4 [Structure Editing], page 10). If this command is used in the
middle of an item, that item is split in two, and the second part becomes the
new item11. If this command is executed before item’s body, the new item is
created before the current one.

M-S-RET Insert a new item with a checkbox (see Section 5.6 [Checkboxes], page 60).

S-UP, S-DOWN
Jump to the previous/next item in the current list, but only if org-support-
shift-select is off12. If not, you can still use paragraph jumping commands
like C-UP and C-DOWN to quite similar effect.

M-UP, M-DOWN
Move the item including sub-items up/down13, i.e., swap with previous/next
item of same indentation. If the list is ordered, renumbering is automatic.

M-LEFT, M-RIGHT
Decrease/increase the indentation of an item, leaving children alone.

M-S-LEFT, M-S-RIGHT
Decrease/increase the indentation of the item, including sub-items. Initially,
the item tree is selected based on current indentation. When these commands
are executed several times in direct succession, the initially selected region is
used, even if the new indentation would imply a different hierarchy. To use the
new hierarchy, break the command chain by moving point.

As a special case, using this command on the very first item of a list moves the
whole list. This behavior can be disabled by configuring org-list-automatic-
rules. The global indentation of a list has no influence on the text after the
list.

C-c C-c If there is a checkbox (see Section 5.6 [Checkboxes], page 60) in the item line,
toggle the state of the checkbox. In any case, verify bullets and indentation
consistency in the whole list.

C-c - Cycle the entire list level through the different itemize/enumerate bullets (‘-’,
‘+’, ‘*’, ‘1.’, ‘1)’) or a subset of them, depending on org-plain-list-ordered-

item-terminator, the type of list, and its indentation. With a numeric prefix
argument N, select the Nth bullet from this list. If there is an active region

11 If you do not want the item to be split, customize the variable org-M-RET-may-split-line.
12 If you want to cycle around items that way, you may customize org-list-use-circular-motion.
13 See org-list-use-circular-motion for a cyclic behavior.

Chapter 2: Document Structure 16

when calling this, all lines are converted to list items. With a prefix argument,
the selected text is changed into a single item. If the first line already was a
list item, any item marker is removed from the list. Finally, even without an
active region, a normal line is converted into a list item.

C-c * Turn a plain list item into a headline—so that it becomes a subheading at its
location. See Section 2.4 [Structure Editing], page 10, for a detailed explanation.

C-c C-* Turn the whole plain list into a subtree of the current heading. Checkboxes (see
Section 5.6 [Checkboxes], page 60) become ‘TODO’, respectively ‘DONE’, keywords
when unchecked, respectively checked.

S-LEFT, S-RIGHT
This command also cycles bullet styles when point is in on the bullet or any-
where in an item line, details depending on org-support-shift-select.

C-c ^ Sort the plain list. Prompt for the sorting method: numerically, alphabetically,
by time, or by custom function.

2.7 Drawers

Sometimes you want to keep information associated with an entry, but you normally do not
want to see it. For this, Org mode has drawers. They can contain anything but a headline
and another drawer. Drawers look like this:

** This is a headline

Still outside the drawer

:DRAWERNAME:

This is inside the drawer.

:END:

After the drawer.

You can interactively insert a drawer at point by calling org-insert-drawer, which
is bound to C-c C-x d. With an active region, this command puts the region inside the
drawer. With a prefix argument, this command calls non-interactive function org-insert-

property-drawer, which creates a ‘PROPERTIES’ drawer right below the current headline.
Org mode uses this special drawer for storing properties (see Chapter 7 [Properties and
Columns], page 68). You cannot use it for anything else.

Completion over drawer keywords is also possible using M-TAB14.

Visibility cycling (see Section 2.2 [Visibility Cycling], page 7) on the headline hides and
shows the entry, but keep the drawer collapsed to a single line. In order to look inside the
drawer, you need to move point to the drawer line and press TAB there.

You can also arrange for state change notes (see Section 5.3.2 [Tracking TODO state
changes], page 55) and clock times (see Section 8.4 [Clocking Work Time], page 86) to be
stored in a ‘LOGBOOK’ drawer. If you want to store a quick note there, similarly to state
changes, use

C-c C-z Add a time-stamped note to the ‘LOGBOOK’ drawer.

14 Many desktops intercept M-TAB to switch windows. Use C-M-i or ESC TAB instead.

Chapter 2: Document Structure 17

2.8 Blocks

Org mode uses ‘#+BEGIN’ . . . ‘#+END’ blocks for various purposes from including source
code examples (see Section 12.6 [Literal Examples], page 146) to capturing time logging
information (see Section 8.4 [Clocking Work Time], page 86). These blocks can be folded
and unfolded by pressing TAB in the ‘#+BEGIN’ line. You can also get all blocks folded at
startup by configuring the variable org-hide-block-startup or on a per-file basis by using

#+STARTUP: hideblocks

#+STARTUP: nohideblocks

Chapter 3: Tables 18

3 Tables

Org comes with a fast and intuitive table editor. Spreadsheet-like calculations are supported
using the Emacs Calc package (see calc).

3.1 Built-in Table Editor

Org makes it easy to format tables in plain ASCII. Any line with ‘|’ as the first non-
whitespace character is considered part of a table. ‘|’ is also the column separator1. More-
over, a line starting with ‘|-’ is a horizontal rule. It separates rows explicitly. Rows before
the first horizontal rule are header lines. A table might look like this:

| Name | Phone | Age |

|-------+-------+-----|

| Peter | 1234 | 17 |

| Anna | 4321 | 25 |

A table is re-aligned automatically each time you press TAB, RET or C-c C-c inside the
table. TAB also moves to the next field—RET to the next row—and creates new table rows
at the end of the table or before horizontal lines. The indentation of the table is set by the
first line. Horizontal rules are automatically expanded on every re-align to span the whole
table width. So, to create the above table, you would only type

|Name|Phone|Age|

|-

and then press TAB to align the table and start filling in fields. Even faster would be to
type ‘|Name|Phone|Age’ followed by C-c RET.

When typing text into a field, Org treats DEL, Backspace, and all character keys in a
special way, so that inserting and deleting avoids shifting other fields. Also, when typing
immediately after point was moved into a new field with TAB, S-TAB or RET, the field is
automatically made blank. If this behavior is too unpredictable for you, configure the
option org-table-auto-blank-field.

Creation and conversion

C-c | (org-table-create-or-convert-from-region)
Convert the active region to table. If every line contains at least one TAB

character, the function assumes that the material is tab separated. If every line
contains a comma, comma-separated values (CSV) are assumed. If not, lines
are split at whitespace into fields. You can use a prefix argument to force a
specific separator: C-u forces CSV, C-u C-u forces TAB, C-u C-u C-u prompts
for a regular expression to match the separator, and a numeric argument N
indicates that at least N consecutive spaces, or alternatively a TAB will be the
separator.

If there is no active region, this command creates an empty Org table. But it
is easier just to start typing, like | N a m e | P h o n e | A g e RET | - TAB.

1 To insert a vertical bar into a table field, use ‘\vert’ or, inside a word ‘abc\vert{}def’.

Chapter 3: Tables 19

Re-aligning and field motion

C-c C-c (org-table-align)
Re-align the table without moving point.

TAB (org-table-next-field)
Re-align the table, move to the next field. Creates a new row if necessary.

M-x org-table-blank-field

Blank the current table field or active region.

S-TAB (org-table-previous-field)
Re-align, move to previous field.

RET (org-table-next-row)
Re-align the table and move down to next row. Creates a new row if necessary.
At the beginning or end of a line, RET still inserts a new line, so it can be used
to split a table.

M-a (org-table-beginning-of-field)
Move to beginning of the current table field, or on to the previous field.

M-e (org-table-end-of-field)
Move to end of the current table field, or on to the next field.

Column and row editing

M-LEFT (org-table-move-column-left)
Move the current column left.

M-RIGHT (org-table-move-column-right)
Move the current column right.

M-S-LEFT (org-table-delete-column)
Kill the current column.

M-S-RIGHT (org-table-insert-column)
Insert a new column at point position. Move the recent column and all cells to
the right of this column to the right.

M-UP (org-table-move-row-up)
Move the current row up.

M-DOWN (org-table-move-row-down)
Move the current row down.

M-S-UP (org-table-kill-row)
Kill the current row or horizontal line.

S-UP (org-table-move-cell-up)
Move cell up by swapping with adjacent cell.

S-DOWN (org-table-move-cell-down)
Move cell down by swapping with adjacent cell.

S-LEFT (org-table-move-cell-left)
Move cell left by swapping with adjacent cell.

Chapter 3: Tables 20

S-RIGHT (org-table-move-cell-right)
Move cell right by swapping with adjacent cell.

M-S-DOWN (org-table-insert-row)
Insert a new row above the current row. With a prefix argument, the line is
created below the current one.

C-c - (org-table-insert-hline)
Insert a horizontal line below current row. With a prefix argument, the line is
created above the current line.

C-c RET (org-table-hline-and-move)
Insert a horizontal line below current row, and move point into the row below
that line.

C-c ^ (org-table-sort-lines)
Sort the table lines in the region. The position of point indicates the column
to be used for sorting, and the range of lines is the range between the nearest
horizontal separator lines, or the entire table. If point is before the first column,
you are prompted for the sorting column. If there is an active region, the mark
specifies the first line and the sorting column, while point should be in the last
line to be included into the sorting. The command prompts for the sorting
type, alphabetically, numerically, or by time. You can sort in normal or reverse
order. You can also supply your own key extraction and comparison functions.
When called with a prefix argument, alphabetic sorting is case-sensitive.

Regions

C-c C-x M-w (org-table-copy-region)
Copy a rectangular region from a table to a special clipboard. Point and mark
determine edge fields of the rectangle. If there is no active region, copy just the
current field. The process ignores horizontal separator lines.

C-c C-x C-w (org-table-cut-region)
Copy a rectangular region from a table to a special clipboard, and blank all
fields in the rectangle. So this is the “cut” operation.

C-c C-x C-y (org-table-paste-rectangle)
Paste a rectangular region into a table. The upper left corner ends up in the
current field. All involved fields are overwritten. If the rectangle does not fit
into the present table, the table is enlarged as needed. The process ignores
horizontal separator lines.

M-RET (org-table-wrap-region)
Split the current field at point position and move the rest to the line below.
If there is an active region, and both point and mark are in the same column,
the text in the column is wrapped to minimum width for the given number of
lines. A numeric prefix argument may be used to change the number of desired
lines. If there is no region, but you specify a prefix argument, the current field
is made blank, and the content is appended to the field above.

Chapter 3: Tables 21

Calculations

C-c + (org-table-sum)
Sum the numbers in the current column, or in the rectangle defined by the
active region. The result is shown in the echo area and can be inserted with
C-y.

S-RET (org-table-copy-down)
When current field is empty, copy from first non-empty field above. When not
empty, copy current field down to next row and move point along with it.

Depending on the variable org-table-copy-increment, integer and time
stamp field values, and fields prefixed or suffixed with a whole number, can be
incremented during copy. Also, a 0 prefix argument temporarily disables the
increment.

This key is also used by shift-selection and related modes (see Section 17.14.2
[Conflicts], page 268).

Miscellaneous

C-c ` (org-table-edit-field)
Edit the current field in a separate window. This is useful for fields that are
not fully visible (see Section 3.2 [Column Width and Alignment], page 22).
When called with a C-u prefix, just make the full field visible, so that it can be
edited in place. When called with two C-u prefixes, make the editor window
follow point through the table and always show the current field. The follow
mode exits automatically when point leaves the table, or when you repeat this
command with C-u C-u C-c `.

M-x org-table-import

Import a file as a table. The table should be TAB or whitespace separated. Use,
for example, to import a spreadsheet table or data from a database, because
these programs generally can write TAB-separated text files. This command
works by inserting the file into the buffer and then converting the region to
a table. Any prefix argument is passed on to the converter, which uses it to
determine the separator.

C-c | (org-table-create-or-convert-from-region)
Tables can also be imported by pasting tabular text into the Org buffer, se-
lecting the pasted text with C-x C-x and then using the C-c | command (see
[Creation and conversion], page 18).

M-x org-table-export

Export the table, by default as a TAB-separated file. Use for data exchange
with, for example, spreadsheet or database programs. The format used
to export the file can be configured in the variable org-table-export-

default-format. You may also use properties ‘TABLE_EXPORT_FILE’ and
‘TABLE_EXPORT_FORMAT’ to specify the file name and the format for table
export in a subtree. Org supports quite general formats for exported tables.
The exporter format is the same as the format used by Orgtbl radio tables,
see Section A.6.3 [Translator functions], page 283, for a detailed description.

Chapter 3: Tables 22

M-x org-table-header-line-mode

Turn on the display of the first data row of the table at point in the window
header line when this first row is not visible anymore in the buffer. You can
activate this minor mode by default by setting the option org-table-header-

line-p to t.

M-x org-table-transpose-table-at-point

Transpose the table at point and eliminate hlines.

3.2 Column Width and Alignment

The width of columns is automatically determined by the table editor. The alignment of
a column is determined automatically from the fraction of number-like versus non-number
fields in the column.

Editing a field may modify alignment of the table. Moving a contiguous row or column—
i.e., using TAB or RET—automatically re-aligns it. If you want to disable this behavior, set
org-table-automatic-realign to nil. In any case, you can always align manually a table:

C-c C-c (org-table-align)
Align the current table.

Setting the option org-startup-align-all-tables re-aligns all tables in a file upon
visiting it. You can also set this option on a per-file basis with:

#+STARTUP: align

#+STARTUP: noalign

Sometimes a single field or a few fields need to carry more text, leading to inconveniently
wide columns. Maybe you want to hide away several columns or display them with a fixed
width, regardless of content, as shown in the following example.

|---+---------------------+--------| |---+-------...+...|

| | <6> | | | | <6> ...|...|

| 1 | one | some | ----\ | 1 | one ...|...|

| 2 | two | boring | ----/ | 2 | two ...|...|

| 3 | This is a long text | column | | 3 | This i...|...|

|---+---------------------+--------| |---+-------...+...|

To set the width of a column, one field anywhere in the column may contain just the
string ‘<N>’ where N specifies the width as a number of characters. You control displayed
width of columns with the following tools:

C-c TAB (org-table-toggle-column-width)
Shrink or expand current column.

If a width cookie specifies a width W for the column, shrinking it displays the
first W visible characters only. Otherwise, the column is shrunk to a single
character.

When called before the first column or after the last one, ask for a list of column
ranges to operate on.

C-u C-c TAB (org-table-shrink)
Shrink all columns with a column width. Expand the others.

Chapter 3: Tables 23

C-u C-u C-c TAB (org-table-expand)
Expand all columns.

To see the full text of a shrunk field, hold the mouse over it: a tool-tip window then
shows the full contents of the field. Alternatively, C-h . (display-local-help) reveals
them, too. For convenience, any change near the shrunk part of a column expands it.

Setting the option org-startup-shrink-all-tables shrinks all columns containing a
width cookie in a file the moment it is visited. You can also set this option on a per-file
basis with:

#+STARTUP: shrink

If you would like to overrule the automatic alignment of number-rich columns to the
right and of string-rich columns to the left, you can use ‘<r>’, ‘<c>’ or ‘<l>’ in a similar
fashion. You may also combine alignment and field width like this: ‘<r10>’.

Lines which only contain these formatting cookies are removed automatically upon ex-
porting the document.

3.3 Column Groups

When Org exports tables, it does so by default without vertical lines because that is visually
more satisfying in general. Occasionally however, vertical lines can be useful to structure
a table into groups of columns, much like horizontal lines can do for groups of rows. In
order to specify column groups, you can use a special row where the first field contains only
‘/’. The further fields can either contain ‘<’ to indicate that this column should start a
group, ‘>’ to indicate the end of a column, or ‘<>’ (no space between ‘<’ and ‘>’) to make
a column a group of its own. Upon export, boundaries between column groups are marked
with vertical lines. Here is an example:

| N | N^2 | N^3 | N^4 | sqrt(n) | sqrt[4](N) |

|---+-----+-----+-----+---------+------------|

| / | < | | > | < | > |

| 1 | 1 | 1 | 1 | 1 | 1 |

| 2 | 4 | 8 | 16 | 1.4142 | 1.1892 |

| 3 | 9 | 27 | 81 | 1.7321 | 1.3161 |

|---+-----+-----+-----+---------+------------|

#+TBLFM: $2=$1^2::$3=$1^3::$4=$1^4::$5=sqrt($1)::$6=sqrt(sqrt(($1)))

It is also sufficient to just insert the column group starters after every vertical line you
would like to have:

| N | N^2 | N^3 | N^4 | sqrt(n) | sqrt[4](N) |

|---+-----+-----+-----+---------+------------|

| / | < | | | < | |

3.4 The Orgtbl Minor Mode

If you like the intuitive way the Org table editor works, you might also want to use it
in other modes like Text mode or Mail mode. The minor mode Orgtbl mode makes this
possible. You can always toggle the mode with M-x orgtbl-mode. To turn it on by default,
for example in Message mode, use

Chapter 3: Tables 24

(add-hook 'message-mode-hook #'turn-on-orgtbl)

Furthermore, with some special setup, it is possible to maintain tables in arbitrary
syntax with Orgtbl mode. For example, it is possible to construct LATEX tables with the
underlying ease and power of Orgtbl mode, including spreadsheet capabilities. For details,
see Section A.6 [Tables in Arbitrary Syntax], page 281.

3.5 The Spreadsheet

The table editor makes use of the Emacs Calc package to implement spreadsheet-like ca-
pabilities. It can also evaluate Emacs Lisp forms to derive fields from other fields. While
fully featured, Org’s implementation is not identical to other spreadsheets. For example,
Org knows the concept of a column formula that will be applied to all non-header fields
in a column without having to copy the formula to each relevant field. There is also a
formula debugger, and a formula editor with features for highlighting fields in the table
corresponding to the references at point in the formula, moving these references by arrow
keys.

3.5.1 References

To compute fields in the table from other fields, formulas must reference other fields or
ranges. In Org, fields can be referenced by name, by absolute coordinates, and by relative
coordinates. To find out what the coordinates of a field are, press C-c ? in that field, or
press C-c } to toggle the display of a grid.

Field references

Formulas can reference the value of another field in two ways. Like in any other spreadsheet,
you may reference fields with a letter/number combination like ‘B3’, meaning the second
field in the third row. However, Org prefers to use another, more general representation
that looks like this:2

@ROW$COLUMN

Column specifications can be absolute like ‘$1’, ‘$2’, . . . , ‘$N’, or relative to the current
column, i.e., the column of the field which is being computed, like ‘$+1’ or ‘$-2’. ‘$<’ and
‘$>’ are immutable references to the first and last column, respectively, and you can use
‘$>>>’ to indicate the third column from the right.

The row specification only counts data lines and ignores horizontal separator lines, or
“hlines”. Like with columns, you can use absolute row numbers ‘@1’, ‘@2’, . . . , ‘@N’, and
row numbers relative to the current row like ‘@+3’ or ‘@-1’. ‘@<’ and ‘@>’ are immutable
references the first and last row in the table, respectively. You may also specify the row
relative to one of the hlines: ‘@I’ refers to the first hline, ‘@II’ to the second, etc. ‘@-I’
refers to the first such line above the current line, ‘@+I’ to the first such line below the
current line. You can also write ‘@III+2’ which is the second data line after the third hline
in the table.

2 Org understands references typed by the user as ‘B4’, but it does not use this syntax when offering
a formula for editing. You can customize this behavior using the variable org-table-use-standard-

references.

Chapter 3: Tables 25

‘@0’ and ‘$0’ refer to the current row and column, respectively, i.e., to the row/column
for the field being computed. Also, if you omit either the column or the row part of the
reference, the current row/column is implied.

Org’s references with unsigned numbers are fixed references in the sense that if you
use the same reference in the formula for two different fields, the same field is referenced
each time. Org’s references with signed numbers are floating references because the same
reference operator can reference different fields depending on the field being calculated by
the formula.

Here are a few examples:

‘@2$3’ 2nd row, 3rd column (same as ‘C2’)
‘$5’ column 5 in the current row (same as ‘E&’)
‘@2’ current column, row 2
‘@-1$-3’ field one row up, three columns to the left
‘@-I$2’ field just under hline above current row, column 2
‘@>$5’ field in the last row, in column 5

Range references

You may reference a rectangular range of fields by specifying two field references connected
by two dots ‘..’. The ends are included in the range. If both fields are in the current row,
you may simply use ‘$2..$7’, but if at least one field is in a different row, you need to use
the general ‘@ROW$COLUMN’ format at least for the first field, i.e., the reference must start
with ‘@’ in order to be interpreted correctly. Examples:

‘$1..$3’ first three fields in the current row
‘$P..$Q’ range, using column names (see Section 3.5.10 [Advanced features],

page 34)

‘$<<<..$>>’ start in third column, continue to the last but one
‘@2$1..@4$3’ nine fields between these two fields (same as ‘A2..C4’)
‘@-1$-2..@-1’ 3 fields in the row above, starting from 2 columns on the left
‘@I..II’ between first and second hline, short for ‘@I..@II’

Range references return a vector of values that can be fed into Calc vector functions. Empty
fields in ranges are normally suppressed, so that the vector contains only the non-empty
fields. For other options with the mode switches ‘E’, ‘N’ and examples, see Section 3.5.2
[Formula syntax for Calc], page 26.

Field coordinates in formulas

One of the very first actions during evaluation of Calc formulas and Lisp formulas is to
substitute ‘@#’ and ‘$#’ in the formula with the row or column number of the field where
the current result will go to. The traditional Lisp formula equivalents are org-table-

current-dline and org-table-current-column. Examples:

‘if(@# % 2, $#, string(""))’
Insert column number on odd rows, set field to empty on even rows.

‘$2 = '(identity remote(FOO, @@#$1))’
Copy text or values of each row of column 1 of the table named FOO into
column 2 of the current table.

Chapter 3: Tables 26

‘@3 = 2 * remote(FOO, @1$$#)’
Insert the doubled value of each column of row 1 of the table named FOO into
row 3 of the current table.

For the second and third examples, table FOO must have at least as many rows or columns
as the current table. Note that this is inefficient3 for large number of rows.

Named references

‘$name’ is interpreted as the name of a column, parameter or constant. Constants are
defined globally through the variable org-table-formula-constants, and locally—for the
file—through a line like this example:

#+CONSTANTS: c=299792458. pi=3.14 eps=2.4e-6

Also, properties (see Chapter 7 [Properties and Columns], page 68) can be used as
constants in table formulas: for a property ‘Xyz’ use the name ‘$PROP_Xyz’, and the property
will be searched in the current outline entry and in the hierarchy above it. If you have
the ‘constants.el’ package, it will also be used to resolve constants, including natural
constants like ‘$h’ for Planck’s constant, and units like ‘$km’ for kilometers4. Column
names and parameters can be specified in special table lines. These are described below,
see Section 3.5.10 [Advanced features], page 34. All names must start with a letter, and
further consist of letters and numbers.

Remote references

You may also reference constants, fields and ranges from a different table, either in the
current file or even in a different file. The syntax is

remote(NAME,REF)

where NAME can be the name of a table in the current file as set by a ‘#+NAME:’ line
before the table. It can also be the ID of an entry, even in a different file, and the reference
then refers to the first table in that entry. REF is an absolute field or range reference as
described above for example ‘@3$3’ or ‘$somename’, valid in the referenced table.

When NAME has the format ‘@ROW$COLUMN’, it is substituted with the name or ID found
in this field of the current table. For example ‘remote($1, @@>$2)’⇒ ‘remote(year_2013,
@@>$1)’. The format ‘B3’ is not supported because it can not be distinguished from a plain
table name or ID.

3.5.2 Formula syntax for Calc

A formula can be any algebraic expression understood by the Emacs Calc package. Note
that Calc has the non-standard convention that ‘/’ has lower precedence than ‘*’, so that
‘a/b*c’ is interpreted as ‘(a/(b*c))’. Before evaluation by calc-eval (see Section “Calling
Calc from Your Programs” in calc), variable substitution takes place according to the rules
described above.

The range vectors can be directly fed into the Calc vector functions like vmean and vsum.

3 The computation time scales as O(N^2) because table FOO is parsed for each field to be copied.
4 The file ‘constants.el’ can supply the values of constants in two different unit systems, ‘SI’ and ‘cgs’.

Which one is used depends on the value of the variable constants-unit-system. You can use the
‘STARTUP’ options ‘constSI’ and ‘constcgs’ to set this value for the current buffer.

Chapter 3: Tables 27

A formula can contain an optional mode string after a semicolon. This string consists of
flags to influence Calc and other modes during execution. By default, Org uses the standard
Calc modes (precision 12, angular units degrees, fraction and symbolic modes off). The
display format, however, has been changed to ‘(float 8)’ to keep tables compact. The
default settings can be configured using the variable org-calc-default-modes.

‘p20’ Set the internal Calc calculation precision to 20 digits.

‘n3’, ‘s3’, ‘e2’, ‘f4’
Normal, scientific, engineering or fixed format of the result of Calc passed back
to Org. Calc formatting is unlimited in precision as long as the Calc calculation
precision is greater.

‘D’, ‘R’ Degree and radian angle modes of Calc.

‘F’, ‘S’ Fraction and symbolic modes of Calc.

‘u’ Units simplification mode of Calc. Calc is also a symbolic calculator and is ca-
pable of working with values having a unit, represented with numerals followed
by a unit string in Org table cells. This mode instructs Calc to simplify the
units in the computed expression before returning the result.

‘T’, ‘t’, ‘U’ Duration computations in Calc or Lisp, Section 3.5.4 [Durations and time
values], page 29.

‘E’ If and how to consider empty fields. Without ‘E’ empty fields in range references
are suppressed so that the Calc vector or Lisp list contains only the non-empty
fields. With ‘E’ the empty fields are kept. For empty fields in ranges or empty
field references the value ‘nan’ (not a number) is used in Calc formulas and
the empty string is used for Lisp formulas. Add ‘N’ to use 0 instead for both
formula types. For the value of a field the mode ‘N’ has higher precedence than
‘E’.

‘N’ Interpret all fields as numbers, use 0 for non-numbers. See the next section to
see how this is essential for computations with Lisp formulas. In Calc formulas
it is used only occasionally because there number strings are already interpreted
as numbers without ‘N’.

‘L’ Literal, for Lisp formulas only. See the next section.

Unless you use large integer numbers or high-precision calculation and display for floating
point numbers you may alternatively provide a printf format specifier to reformat the Calc
result after it has been passed back to Org instead of letting Calc already do the formatting5.
A few examples:

‘$1+$2’ Sum of first and second field
‘$1+$2;%.2f’ Same, format result to two decimals
‘exp($2)+exp($1)’ Math functions can be used
‘$0;%.1f’ Reformat current cell to 1 decimal
‘($3-32)*5/9’ Degrees F → C conversion

5 The printf reformatting is limited in precision because the value passed to it is converted into an “integer”
or “double”. The “integer” is limited in size by truncating the signed value to 32 bits. The “double” is
limited in precision to 64 bits overall which leaves approximately 16 significant decimal digits.

Chapter 3: Tables 28

‘$c/$1/$cm’ Hz → cm conversion, using ‘constants.el’
‘tan($1);Dp3s1’ Compute in degrees, precision 3, display SCI 1
‘sin($1);Dp3%.1e’ Same, but use printf specifier for display
‘vmean($2..$7)’ Compute column range mean, using vector function
‘vmean($2..$7);EN’ Same, but treat empty fields as 0
‘taylor($3,x=7,2)’ Taylor series of $3, at x=7, second degree

Calc also contains a complete set of logical operations (see Section “Logical Operations”
in calc). For example

‘if($1 < 20, teen, string(""))’
‘"teen"’ if age ‘$1’ is less than 20, else the Org table result field is set to empty
with the empty string.

‘if("$1" == "nan" || "$2" == "nan", string(""), $1 + $2); E f-1’
Sum of the first two columns. When at least one of the input fields is empty
the Org table result field is set to empty. ‘E’ is required to not convert empty
fields to 0. ‘f-1’ is an optional Calc format string similar to ‘%.1f’ but leaves
empty results empty.

‘if(typeof(vmean($1..$7)) == 12, string(""), vmean($1..$7)); E’
Mean value of a range unless there is any empty field. Every field in the range
that is empty is replaced by ‘nan’ which lets ‘vmean’ result in ‘nan’. Then
‘typeof =’ 12= detects the ‘nan’ from vmean and the Org table result field is
set to empty. Use this when the sample set is expected to never have missing
values.

‘if("$1..$7" == "[]", string(""), vmean($1..$7))’
Mean value of a range with empty fields skipped. Every field in the range that
is empty is skipped. When all fields in the range are empty the mean value is
not defined and the Org table result field is set to empty. Use this when the
sample set can have a variable size.

‘vmean($1..$7); EN’
To complete the example before: Mean value of a range with empty fields
counting as samples with value 0. Use this only when incomplete sample sets
should be padded with 0 to the full size.

You can add your own Calc functions defined in Emacs Lisp with defmath and use them
in formula syntax for Calc.

3.5.3 Emacs Lisp forms as formulas

It is also possible to write a formula in Emacs Lisp. This can be useful for string manipu-
lation and control structures, if Calc’s functionality is not enough.

A formula is evaluated as a Lisp form when it starts with a single-quote followed by
an opening parenthesis. Cell table references are interpolated into the Lisp form before
execution. The evaluation should return either a string or a number. Evaluation modes
and a printf format used to render the returned values can be specified after a semicolon.

By default, references are interpolated as literal Lisp strings: the field content is replaced
in the Lisp form stripped of leading and trailing white space and surrounded in double-
quotes. For example:

Chapter 3: Tables 29

'(concat $1 $2)

concatenates the content of columns 1 and column 2.

When the ‘N’ flag is used, all referenced elements are parsed as numbers and interpolated
as Lisp numbers, without quotes. Fields that cannot be parsed as numbers are interpolated
as zeros. For example:

'(+ $1 $2);N

adds columns 1 and 2, equivalent to Calc’s ‘$1+$2’. Ranges are inserted as space-separated
fields, so they can be embedded in list or vector syntax. For example:

'(apply '+ '($1..$4));N

computes the sum of columns 1 to 4, like Calc’s ‘vsum($1..$4)’.

When the ‘L’ flag is used, all fields are interpolated literally: the cell content is replaced
in the Lisp form stripped of leading and trailing white space and without quotes. If a
reference is intended to be interpreted as a string by the Lisp form, the reference operator
itself should be enclosed in double-quotes, like ‘"$3"’. The ‘L’ flag is useful when strings
and numbers are used in the same Lisp form. For example:

'(substring "$1" $2 $3);L

extracts the part of the string in column 1 between the character positions specified in the
integers in column 2 and 3, and it is easier to read than the equivalent:

'(substring $1 (string-to-number $2) (string-to-number $3))

When the formula itself contains ‘;’ symbol, Org mode may incorrectly interpret every-
thing past ‘;’ as format specifier:

'(concat $1 ";")

You can put an extra tailing ‘;’ to indicate that all the earlier instances of ‘;’ belong to the
formula itself:

'(concat $1 ";");

3.5.4 Durations and time values

If you want to compute time values use the ‘T’, ‘t’, or ‘U’ flag, either in Calc formulas or
Elisp formulas:

| Task 1 | Task 2 | Total |

|---------+----------+----------|

| 2:12 | 1:47 | 03:59:00 |

| 2:12 | 1:47 | 03:59 |

| 3:02:20 | -2:07:00 | 0.92 |

#+TBLFM: @2$3=$1+$2;T::@3$3=$1+$2;U::@4$3=$1+$2;t

Input duration values must be of the form ‘HH:MM[:SS]’, where seconds are optional.
With the ‘T’ flag, computed durations are displayed as ‘HH:MM:SS’ (see the first formula
above). With the ‘U’ flag, seconds are omitted so that the result is only ‘HH:MM’ (see second
formula above). Zero-padding of the hours field depends upon the value of the variable
org-table-duration-hour-zero-padding.

With the ‘t’ flag, computed durations are displayed according to the value of the option
org-table-duration-custom-format, which defaults to hours and displays the result as
a fraction of hours (see the third formula in the example above).

Chapter 3: Tables 30

Negative duration values can be manipulated as well, and integers are considered as
seconds in addition and subtraction.

3.5.5 Field and range formulas

To assign a formula to a particular field, type it directly into the field, preceded by ‘:=’, for
example ‘vsum(@II..III)’. When you press TAB or RET or C-c C-c with point still in the
field, the formula is stored as the formula for this field, evaluated, and the current field is
replaced with the result.

Formulas are stored in a special ‘TBLFM’ keyword located directly below the table. If you
type the equation in the fourth field of the third data line in the table, the formula looks like
‘@3$4=$1+$2’. When inserting/deleting/swapping column and rows with the appropriate
commands, absolute references (but not relative ones) in stored formulas are modified in
order to still reference the same field. To avoid this from happening, in particular in range
references, anchor ranges at the table borders (using ‘@<’, ‘@>’, ‘$<’, ‘$>’), or at hlines using
the ‘@I’ notation. Automatic adaptation of field references does not happen if you edit the
table structure with normal editing commands—you must fix the formulas yourself.

Instead of typing an equation into the field, you may also use the following command

C-u C-c = (org-table-eval-formula)
Install a new formula for the current field. The command prompts for a formula
with default taken from the ‘TBLFM’ keyword, applies it to the current field, and
stores it.

The left-hand side of a formula can also be a special expression in order to assign the
formula to a number of different fields. There is no keyboard shortcut to enter such range
formulas. To add them, use the formula editor (see Section 3.5.8 [Editing and debugging
formulas], page 31) or edit the ‘TBLFM’ keyword directly.

‘$2=’ Column formula, valid for the entire column. This is so common that Org treats
these formulas in a special way, see Section 3.5.6 [Column formulas], page 30.

‘@3=’ Row formula, applies to all fields in the specified row. ‘@>=’ means the last row.

‘@1$2..@4$3=’
Range formula, applies to all fields in the given rectangular range. This can
also be used to assign a formula to some but not all fields in a row.

‘$NAME=’ Named field, see Section 3.5.10 [Advanced features], page 34.

3.5.6 Column formulas

When you assign a formula to a simple column reference like ‘$3=’, the same formula is used
in all fields of that column, with the following very convenient exceptions: (i) If the table
contains horizontal separator hlines with rows above and below, everything before the first
such hline is considered part of the table header and is not modified by column formulas.
Therefore, a header is mandatory when you use column formulas and want to add hlines
to group rows, like for example to separate a total row at the bottom from the summand
rows above. (ii) Fields that already get a value from a field/range formula are left alone by
column formulas. These conditions make column formulas very easy to use.

To assign a formula to a column, type it directly into any field in the column, preceded
by an equal sign, like ‘=$1+$2’. When you press TAB or RET or C-c C-c with point still in

Chapter 3: Tables 31

the field, the formula is stored as the formula for the current column, evaluated and the
current field replaced with the result. If the field contains only ‘=’, the previously stored
formula for this column is used. For each column, Org only remembers the most recently
used formula. In the ‘TBLFM’ keyword, column formulas look like ‘$4=$1+$2’. The left-hand
side of a column formula can not be the name of column, it must be the numeric column
reference or ‘$>’.

Instead of typing an equation into the field, you may also use the following command:

C-c = (org-table-eval-formula)
Install a new formula for the current column and replace current field with the
result of the formula. The command prompts for a formula, with default taken
from the ‘TBLFM’ keyword, applies it to the current field and stores it. With a
numeric prefix argument, e.g., C-5 C-c =, the command applies it to that many
consecutive fields in the current column.

3.5.7 Lookup functions

Org has three predefined Emacs Lisp functions for lookups in tables.

‘(org-lookup-first VAL S-LIST R-LIST &optional PREDICATE)’
Searches for the first element S in list S-LIST for which

(PREDICATE VAL S)

is non-nil; returns the value from the corresponding position in list R-LIST.
The default PREDICATE is equal. Note that the parameters VAL and S are
passed to PREDICATE in the same order as the corresponding parameters are
in the call to org-lookup-first, where VAL precedes S-LIST. If R-LIST is
nil, the matching element S of S-LIST is returned.

‘(org-lookup-last VAL S-LIST R-LIST &optional PREDICATE)’
Similar to org-lookup-first above, but searches for the last element for which
PREDICATE is non-nil.

‘(org-lookup-all VAL S-LIST R-LIST &optional PREDICATE)’
Similar to org-lookup-first, but searches for all elements for which PRED-
ICATE is non-nil, and returns all corresponding values. This function can
not be used by itself in a formula, because it returns a list of values. However,
powerful lookups can be built when this function is combined with other Emacs
Lisp functions.

If the ranges used in these functions contain empty fields, the ‘E’ mode for the formula
should usually be specified: otherwise empty fields are not included in S-LIST and/or R-
LIST which can, for example, result in an incorrect mapping from an element of S-LIST to
the corresponding element of R-LIST.

These three functions can be used to implement associative arrays, count matching cells,
rank results, group data, etc. For practical examples see this tutorial on Worg.

3.5.8 Editing and debugging formulas

You can edit individual formulas in the minibuffer or directly in the field. Org can also
prepare a special buffer with all active formulas of a table. When offering a formula for

https://orgmode.org/worg/org-tutorials/org-lookups.html

Chapter 3: Tables 32

editing, Org converts references to the standard format (like ‘B3’ or ‘D&’) if possible. If
you prefer to only work with the internal format (like ‘@3$2’ or ‘$4’), configure the variable
org-table-use-standard-references.

C-c = or C-u C-c = (org-table-eval-formula)
Edit the formula associated with the current column/field in the minibuffer. See
Section 3.5.6 [Column formulas], page 30, and Section 3.5.5 [Field and range
formulas], page 30.

C-u C-u C-c = (org-table-eval-formula)
Re-insert the active formula (either a field formula, or a column formula) into
the current field, so that you can edit it directly in the field. The advantage
over editing in the minibuffer is that you can use the command C-c ?.

C-c ? (org-table-field-info)
While editing a formula in a table field, highlight the field(s) referenced by the
reference at point position in the formula.

C-c } (org-table-toggle-coordinate-overlays)
Toggle the display of row and column numbers for a table, using overlays. These
are updated each time the table is aligned; you can force it with C-c C-c.

C-c { (org-table-toggle-formula-debugger)
Toggle the formula debugger on and off. See below.

C-c ' (org-table-edit-formulas)
Edit all formulas for the current table in a special buffer, where the formulas
are displayed one per line. If the current field has an active formula, point in
the formula editor marks it. While inside the special buffer, Org automatically
highlights any field or range reference at point position. You may edit, remove
and add formulas, and use the following commands:

C-c C-c or C-x C-s (org-table-fedit-finish)
Exit the formula editor and store the modified formulas. With C-u

prefix, also apply the new formulas to the entire table.

C-c C-q (org-table-fedit-abort)
Exit the formula editor without installing changes.

C-c C-r (org-table-fedit-toggle-ref-type)
Toggle all references in the formula editor between standard (like
‘B3’) and internal (like ‘@3$2’).

TAB (org-table-fedit-lisp-indent)
Pretty-print or indent Lisp formula at point. When in a line con-
taining a Lisp formula, format the formula according to Emacs Lisp
rules. Another TAB collapses the formula back again. In the open
formula, TAB re-indents just like in Emacs Lisp mode.

M-TAB (lisp-complete-symbol)
Complete Lisp symbols, just like in Emacs Lisp mode.

Chapter 3: Tables 33

S-UP, S-DOWN, S-LEFT, S-RIGHT
Shift the reference at point. For example, if the reference is ‘B3’
and you press S-RIGHT, it becomes ‘C3’. This also works for relative
references and for hline references.

M-S-UP (org-table-fedit-line-up)
Move the test line for column formulas up in the Org buffer.

M-S-DOWN (org-table-fedit-line-down)
Move the test line for column formulas down in the Org buffer.

M-UP (org-table-fedit-scroll-up)
Scroll up the window displaying the table.

M-DOWN (org-table-fedit-scroll-down)
Scroll down the window displaying the table.

C-c } Turn the coordinate grid in the table on and off.

Making a table field blank does not remove the formula associated with the field, because
that is stored in a different line—the ‘TBLFM’ keyword line. During the next recalculation,
the field will be filled again. To remove a formula from a field, you have to give an empty
reply when prompted for the formula, or to edit the ‘TBLFM’ keyword.

You may edit the ‘TBLFM’ keyword directly and re-apply the changed equations with C-c

C-c in that line or with the normal recalculation commands in the table.

Using multiple ‘TBLFM’ lines

You may apply the formula temporarily. This is useful when you want to switch the formula
applied to the table. Place multiple ‘TBLFM’ keywords right after the table, and then press
C-c C-c on the formula to apply. Here is an example:

| x | y |

|---+---|

| 1 | |

| 2 | |

#+TBLFM: $2=$1*1

#+TBLFM: $2=$1*2

Pressing C-c C-c in the line of ‘#+TBLFM: $2=$1*2’ yields:

| x | y |

|---+---|

| 1 | 2 |

| 2 | 4 |

#+TBLFM: $2=$1*1

#+TBLFM: $2=$1*2

If you recalculate this table, with C-u C-c *, for example, you get the following result from
applying only the first ‘TBLFM’ keyword.

| x | y |

|---+---|

| 1 | 1 |

| 2 | 2 |

Chapter 3: Tables 34

#+TBLFM: $2=$1*1

#+TBLFM: $2=$1*2

Debugging formulas

When the evaluation of a formula leads to an error, the field content becomes the string
‘#ERROR’. If you want to see what is going on during variable substitution and calculation in
order to find a bug, turn on formula debugging in the Tbl menu and repeat the calculation,
for example by pressing C-u C-u C-c = RET in a field. Detailed information are displayed.

3.5.9 Updating the table

Recalculation of a table is normally not automatic, but needs to be triggered by a com-
mand. To make recalculation at least semi-automatic, see Section 3.5.10 [Advanced fea-
tures], page 34.

In order to recalculate a line of a table or the entire table, use the following commands:

C-c * (org-table-recalculate)
Recalculate the current row by first applying the stored column formulas from
left to right, and all field/range formulas in the current row.

C-u C-c * or C-u C-c C-c

Recompute the entire table, line by line. Any lines before the first hline are left
alone, assuming that these are part of the table header.

C-u C-u C-c * or C-u C-u C-c C-c (org-table-iterate)
Iterate the table by recomputing it until no further changes occur. This may be
necessary if some computed fields use the value of other fields that are computed
later in the calculation sequence.

M-x org-table-recalculate-buffer-tables

Recompute all tables in the current buffer.

M-x org-table-iterate-buffer-tables

Iterate all tables in the current buffer, in order to converge table-to-table de-
pendencies.

3.5.10 Advanced features

If you want the recalculation of fields to happen automatically, or if you want to be able to
assign names6 to fields and columns, you need to reserve the first column of the table for
special marking characters.

C-# (org-table-rotate-recalc-marks)
Rotate the calculation mark in first column through the states ‘#’, ‘*’, ‘!’, ‘$’.
When there is an active region, change all marks in the region.

Here is an example of a table that collects exam results of students and makes use of
these features:

|---+---------+--------+--------+--------+-------+------|

| | Student | Prob 1 | Prob 2 | Prob 3 | Total | Note |

6 Such names must start with an alphabetic character and use only alphanumeric/underscore characters.

Chapter 3: Tables 35

|---+---------+--------+--------+--------+-------+------|

| ! | | P1 | P2 | P3 | Tot | |

| # | Maximum | 10 | 15 | 25 | 50 | 10.0 |

| ^ | | m1 | m2 | m3 | mt | |

|---+---------+--------+--------+--------+-------+------|

| # | Peter | 10 | 8 | 23 | 41 | 8.2 |

| # | Sam | 2 | 4 | 3 | 9 | 1.8 |

|---+---------+--------+--------+--------+-------+------|

| | Average | | | | 25.0 | |

| ^ | | | | | at | |

| $ | max=50 | | | | | |

|---+---------+--------+--------+--------+-------+------|

#+TBLFM: $6=vsum($P1..$P3)::$7=10*$Tot/$max;%.1f::$at=vmean(@-II..@-I);%.1f

Important: Please note that for these special tables, recalculating the table
with C-u C-c * only affects rows that are marked ‘#’ or ‘*’, and fields that have
a formula assigned to the field itself. The column formulas are not applied in
rows with empty first field.

The marking characters have the following meaning:

‘!’ The fields in this line define names for the columns, so that you may refer to a
column as ‘$Tot’ instead of ‘$6’.

‘^’ This row defines names for the fields above the row. With such a definition,
any formula in the table may use ‘$m1’ to refer to the value ‘10’. Also, if you
assign a formula to a names field, it is stored as ‘$name = ...’.

‘_’ Similar to ‘^’, but defines names for the fields in the row below.

‘$’ Fields in this row can define parameters for formulas. For example, if a field in
a ‘$’ row contains ‘max=50’, then formulas in this table can refer to the value
50 using ‘$max’. Parameters work exactly like constants, only that they can be
defined on a per-table basis.

‘#’ Fields in this row are automatically recalculated when pressing TAB or RET or
S-TAB in this row. Also, this row is selected for a global recalculation with C-u

C-c *. Unmarked lines are left alone by this command.

‘*’ Selects this line for global recalculation with C-u C-c *, but not for automatic
recalculation. Use this when automatic recalculation slows down editing too
much.

‘/’ Do not export this line. Useful for lines that contain the narrowing ‘<N>’ markers
or column group markers.

Finally, just to whet your appetite for what can be done with the fantastic Calc package,
here is a table that computes the Taylor series of degree n at location x for a couple of
functions.

|---+-------------+---+-----+--------------------------------------|

| | Func | n | x | Result |

|---+-------------+---+-----+--------------------------------------|

| # | exp(x) | 1 | x | 1 + x |

Chapter 3: Tables 36

| # | exp(x) | 2 | x | 1 + x + x^2 / 2 |

| # | exp(x) | 3 | x | 1 + x + x^2 / 2 + x^3 / 6 |

| # | x^2+sqrt(x) | 2 | x=0 | x*(0.5 / 0) + x^2 (2 - 0.25 / 0) / 2 |

| # | x^2+sqrt(x) | 2 | x=1 | 2 + 2.5 x - 2.5 + 0.875 (x - 1)^2 |

| * | tan(x) | 3 | x | 0.0175 x + 1.77e-6 x^3 |

|---+-------------+---+-----+--------------------------------------|

#+TBLFM: $5=taylor($2,$4,$3);n3

3.6 Org Plot

Org Plot can produce graphs of information stored in Org tables, either graphically or in
ASCII art.

Graphical plots using Gnuplot

Org Plot can produce 2D and 3D graphs of information stored in Org tables using Gnuplot
and Gnuplot mode. To see this in action, ensure that you have both Gnuplot and Gnuplot
mode installed on your system, then call C-c " g or M-x org-plot/gnuplot on the following
table.

#+PLOT: title:"Citas" ind:1 deps:(3) type:2d with:histograms set:"yrange [0:]"

| Sede | Max cites | H-index |

|-----------+-----------+---------|

| Chile | 257.72 | 21.39 |

| Leeds | 165.77 | 19.68 |

| Sao Paolo | 71.00 | 11.50 |

| Stockholm | 134.19 | 14.33 |

| Morelia | 257.56 | 17.67 |

Org Plot supports a range of plot types, and provides the ability to add more. For
example, a radar plot can be generated like so:

#+PLOT: title:"An evaluation of plaintext document formats" transpose:yes type:radar min:0 max:4

| Format | Fine-grained-control | Initial Effort | Syntax simplicity | Editor Support | Integrations | Ease-of-referencing | Versatility |

|-------------------+----------------------+----------------+-------------------+----------------+--------------+---------------------+-------------|

| Word | 2 | 4 | 4 | 2 | 3 | 2 | 2 |

| LaTeX | 4 | 1 | 1 | 3 | 2 | 4 | 3 |

| Org Mode | 4 | 2 | 3.5 | 1 | 4 | 4 | 4 |

| Markdown | 1 | 3 | 3 | 4 | 3 | 3 | 1 |

| Markdown + Pandoc | 2.5 | 2.5 | 2.5 | 3 | 3 | 3 | 2 |

Notice that Org Plot is smart enough to apply the table’s headers as labels. Further
control over the labels, type, content, and appearance of plots can be exercised through the
‘PLOT’ keyword preceding a table. See below for a complete list of Org Plot options. For
more information and examples see the Org Plot tutorial.

Plot options

‘set’ Specify any Gnuplot option to be set when graphing.

‘title’ Specify the title of the plot.

‘ind’ Specify which column of the table to use as the ‘x’ axis.

https://www.gnuplot.info/
http://cars9.uchicago.edu/~ravel/software/gnuplot-mode.html
https://orgmode.org/worg/org-tutorials/org-plot.html

Chapter 3: Tables 37

‘timeind’ Specify which column of the table to use as the ‘x’ axis as a time value.

‘deps’ Specify the columns to graph as a Lisp style list, surrounded by parentheses
and separated by spaces for example ‘dep:(3 4)’ to graph the third and fourth
columns. Defaults to graphing all other columns aside from the ‘ind’ column.

‘transpose’
When ‘y’, ‘yes’, or ‘t’ attempt to transpose the table data before plotting. Also
recognizes the shorthand option ‘trans’.

‘type’ Specify the type of the plot, by default one of ‘2d’, ‘3d’, ‘radar’, or ‘grid’.
Available types can be customized with org-plot/preset-plot-types.

‘with’ Specify a ‘with’ option to be inserted for every column being plotted, e.g.,
‘lines’, ‘points’, ‘boxes’, ‘impulses’. Defaults to ‘lines’.

‘file’ If you want to plot to a file, specify ‘"path/to/desired/output-file"’.

‘labels’ List of labels to be used for the ‘deps’. Defaults to the column headers if they
exist.

‘line’ Specify an entire line to be inserted in the Gnuplot script.

‘map’ When plotting ‘3d’ or ‘grid’ types, set this to ‘t’ to graph a flat mapping rather
than a ‘3d’ slope.

‘min’ Provides a minimum axis value that may be used by a plot type. Implicitly
assumes the ‘y’ axis is being referred to. You can explicitly provide a value for
the ‘x’ or ‘y’ axis with ‘xmin’ and ‘ymin’.

‘max’ Provides a maximum axis value that may be used by a plot type. Implicitly
assumes the ‘y’ axis is being referred to. You can explicitly provide a value for
the ‘x’ or ‘y’ axis with ‘xmax’ and ‘ymax’.

‘ticks’ Provides a desired number of axis ticks to display, that may be used
by a plot type. If none is given a plot type that requires ticks will use
org--plot/sensible-tick-num to try to determine a good value.

‘timefmt’ Specify format of Org mode timestamps as they will be parsed by Gnuplot.
Defaults to ‘%Y-%m-%d-%H:%M:%S’.

‘script’ If you want total control, you can specify a script file—place the file name
between double-quotes—which will be used to plot. Before plotting, every
instance of ‘$datafile’ in the specified script will be replaced with the path to
the generated data file. Note: even if you set this option, you may still want to
specify the plot type, as that can impact the content of the data file.

ASCII bar plots

While point is on a column, typing C-c " a or M-x orgtbl-ascii-plot create a new column
containing an ASCII-art bars plot. The plot is implemented through a regular column
formula. When the source column changes, the bar plot may be updated by refreshing the
table, for example typing C-u C-c *.

| Sede | Max cites | |

|---------------+-----------+--------------|

Chapter 3: Tables 38

| Chile | 257.72 | WWWWWWWWWWWW |

| Leeds | 165.77 | WWWWWWWh |

| Sao Paolo | 71.00 | WWW; |

| Stockholm | 134.19 | WWWWWW: |

| Morelia | 257.56 | WWWWWWWWWWWH |

| Rochefourchat | 0.00 | |

#+TBLFM: $3='(orgtbl-ascii-draw $2 0.0 257.72 12)

The formula is an Elisp call.

[Function]orgtbl-ascii-draw value min max &optional width
Draw an ASCII bar in a table.

VALUE is the value to plot.

MIN is the value displayed as an empty bar. MAX is the value filling all the WIDTH.
Sources values outside this range are displayed as ‘too small’ or ‘too large’.

WIDTH is the number of characters of the bar plot. It defaults to ‘12’.

Chapter 4: Hyperlinks 39

4 Hyperlinks

Like HTML, Org provides support for links inside a file, external links to other files, Usenet
articles, emails, and much more.

4.1 Link Format

Org recognizes plain URIs, possibly wrapped within angle brackets1, and activate them as
clickable links.

The general link format, however, looks like this:

[[LINK][DESCRIPTION]]

or alternatively

[[LINK]]

Some ‘\’, ‘[’ and ‘]’ characters in the LINK part need to be “escaped”, i.e., preceded
by another ‘\’ character. More specifically, the following characters, and only them, must
be escaped:

1. all ‘[’ and ‘]’ characters,

2. every ‘\’ character preceding either ‘]’ or ‘[’,

3. every ‘\’ character at the end of the link.

Functions inserting links (see Section 4.5 [Handling Links], page 43) properly escape
ambiguous characters. You only need to bother about the rules above when inserting
directly, or yanking, a URI within square brackets. When in doubt, you may use the
function org-link-escape, which turns a link string into its escaped form.

Once a link in the buffer is complete, with all brackets present, Org changes the display so
that ‘DESCRIPTION’ is displayed instead of ‘[[LINK][DESCRIPTION]]’ and ‘LINK’ is displayed
instead of ‘[[LINK]]’. Links are highlighted in the org-link face, which, by default, is an
underlined face.

You can directly edit the visible part of a link. This can be either the LINK part, if
there is no description, or the DESCRIPTION part otherwise. To also edit the invisible
LINK part, use C-c C-l with point on the link (see Section 4.5 [Handling Links], page 43).

If you place point at the beginning or just behind the end of the displayed text and press
BS, you remove the—invisible—bracket at that location2. This makes the link incomplete
and the internals are again displayed as plain text. Inserting the missing bracket hides
the link internals again. To show the internal structure of all links, use the menu: Org
→ Hyperlinks → Literal links, customize org-link-descriptive, or use ‘literallinks’
Section 17.8 [startup option], page 262.

1 Plain URIs are recognized only for a well-defined set of schemes. See Section 4.4 [External Links],
page 41. Unlike URI syntax, they cannot contain parenthesis or white spaces, either. URIs within angle
brackets have no such limitation.

2 More accurately, the precise behavior depends on how point arrived there—see Section “Invisible Text”
in elisp.

Chapter 4: Hyperlinks 40

4.2 Internal Links

A link that does not look like a URL—i.e., does not start with a known scheme or a file
name—refers to the current document. You can follow it with C-c C-o when point is on
the link, or with a mouse click (see Section 4.5 [Handling Links], page 43).

Org provides several refinements to internal navigation within a document. Most notably,
a construct like ‘[[#my-custom-id]]’ specifically targets the entry with the ‘CUSTOM_ID’
property set to ‘my-custom-id’. Also, an internal link looking like ‘[[*Some section]]’
points to a headline with the name ‘Some section’3.

When the link does not belong to any of the cases above, Org looks for a dedicated target :
the same string in double angular brackets, like ‘<<My Target>>’.

If no dedicated target exists, the link tries to match the exact name of an element within
the buffer. Naming is done, unsurprisingly, with the ‘NAME’ keyword, which has to be put
in the line before the element it refers to, as in the following example

#+NAME: My Target

| a | table |

|----+------------|

| of | four cells |

Ultimately, if none of the above succeeds, Org searches for a headline that is exactly the
link text but may also include a TODO keyword and tags, or initiates a plain text search,
according to the value of org-link-search-must-match-exact-headline.

Note that you must make sure custom IDs, dedicated targets, and names are unique
throughout the document. Org provides a linter to assist you in the process, if needed. See
Section 17.10 [Org Syntax], page 265.

During export, internal links are used to mark objects and assign them a number.
Marked objects are then referenced by links pointing to them. In particular, links without a
description appear as the number assigned to the marked object4. In the following excerpt
from an Org buffer

1. one item

2. <<target>>another item

Here we refer to item [[target]].

The last sentence will appear as ‘Here we refer to item 2’ when exported.

In non-Org files, the search looks for the words in the link text. In the above example
the search would be for ‘target’.

Following a link pushes a mark onto Org’s own mark ring. You can return to the previous
position with C-c &. Using this command several times in direct succession goes back to
positions recorded earlier.

3 To insert a link targeting a headline, in-buffer completion can be used. Just type a star followed by a
few optional letters into the buffer and press M-TAB. All headlines in the current buffer are offered as
completions.

4 When targeting a ‘NAME’ keyword, the ‘CAPTION’ keyword is mandatory in order to get proper numbering
(see Section 12.8 [Captions], page 150).

Chapter 4: Hyperlinks 41

4.3 Radio Targets

Org can automatically turn any occurrences of certain target names in normal text into
a link. So without explicitly creating a link, the text connects to the target radioing its
position. Radio targets are enclosed by triple angular brackets. For example, a target ‘<<<My
Target>>>’ causes each occurrence of ‘my target’ in normal text to become activated as
a link. The Org file is scanned automatically for radio targets only when the file is first
loaded into Emacs. To update the target list during editing, press C-c C-c with point on
or at a target.

4.4 External Links

Org supports links to files, websites, Usenet and email messages, BBDB database entries
and links to both IRC conversations and their logs. External links are URL-like locators.
They start with a short identifying string followed by a colon. There can be no space after
the colon.

Here is the full set of built-in link types:

‘file’ File links. File name may be remote, absolute, or relative.

As a special case, “file” prefix may be omitted if the file name is complete, e.g.,
it starts with ‘./’, or ‘/’.

‘attachment’
Same as file links but for files and folders attached to the current node (see
Section 10.2 [Attachments], page 106). Attachment links are intended to behave
exactly as file links but for files relative to the attachment directory.

‘bbdb’ Link to a BBDB record, with possible regexp completion.

‘docview’ Link to a document opened with DocView mode. You may specify a page
number.

‘doi’ Link to an electronic resource, through its handle.

‘elisp’ Execute an Elisp command upon activation.

‘gnus’, ‘rmail’, ‘mhe’
Link to messages or folders from a given Emacs MUA.

‘help’ Display documentation of a symbol in ‘*Help*’ buffer.

‘http’, ‘https’
Web links.

‘id’ Link to a specific headline by its ID property, in an Org file.

‘info’ Link to an Info manual, or to a specific node.

‘irc’ Link to an IRC channel.

‘mailto’ Link to message composition.

‘news’ Usenet links.

‘shell’ Execute a shell command upon activation.

Chapter 4: Hyperlinks 42

‘shortdoc’
Link to short documentation summary for an Emacs Lisp function group.5

For more information, see Section “Name Help” in emacs and Section “Docu-
mentation Groups” in elisp.

For ‘file:’ and ‘id:’ links, you can additionally specify a line number, or a text search
string, separated by ‘::’. In Org files, you may link to a headline name, a custom ID, or a
code reference instead.

The following table illustrates the link types above, along with their options:

Link Type Example
http ‘http://staff.science.uva.nl/c.dominik/’
https ‘https://orgmode.org/’
doi ‘doi:10.1000/182’
file ‘file:/home/dominik/images/jupiter.jpg’

‘/home/dominik/images/jupiter.jpg’ (same as above)
‘file:papers/last.pdf’
‘./papers/last.pdf’ (same as above)
‘file:/ssh:me@some.where:papers/last.pdf’ (remote)
‘/ssh:me@some.where:papers/last.pdf’ (same as above)
‘file:sometextfile::NNN’ (jump to line number)
‘file:projects.org’
‘file:projects.org::some words’ (text search)6

‘file:projects.org::*task title’ (headline search)
‘file:projects.org::#custom-id’ (headline search)

attachment ‘attachment:projects.org’
‘attachment:projects.org::some words’ (text search)

docview ‘docview:papers/last.pdf::NNN’
id ‘id:B7423F4D-2E8A-471B-8810-C40F074717E9’

‘id:B7423F4D-2E8A-471B-8810-C40F074717E9::*task’ (headline search)
news ‘news:comp.emacs’
mailto ‘mailto:adent@galaxy.net’
mhe ‘mhe:folder’ (folder link)

‘mhe:folder#id’ (message link)
rmail ‘rmail:folder’ (folder link)

‘rmail:folder#id’ (message link)
gnus ‘gnus:group’ (group link)

‘gnus:group#id’ (article link)
bbdb ‘bbdb:R.*Stallman’ (record with regexp)
irc ‘irc:/irc.com/#emacs/bob’
help ‘help:org-store-link’
info ‘info:org#External links’

5 You can run ‘M-x shortdoc-display-group’ to list all known documentation groups.
6 The actual behavior of the search depends on the value of the variable org-link-search-must-match-

exact-headline. If its value is nil, then a fuzzy text search is done. If it is t, then only the exact
headline is matched, ignoring spaces and statistic cookies. If the value is query-to-create, then an
exact headline is searched; if it is not found, then the user is queried to create it.

Chapter 4: Hyperlinks 43

shortdoc ‘shortdoc:text-properties’
‘shortdoc:text-properties::#get-pos-property’

shell ‘shell:ls *.org’
elisp ‘elisp:(find-file "Elisp.org")’ (Elisp form to evaluate)

‘elisp:org-agenda’ (interactive Elisp command)

On top of these built-in link types, additional ones are available through the
‘org-contrib’ repository (see Section 1.2 [Installation], page 2). For example, these links
to VM or Wanderlust messages are available when you load the corresponding libraries
from the ‘org-contrib’ repository:

‘vm:folder’ VM folder link
‘vm:folder#id’ VM message link
‘vm://myself@some.where.org/folder#id’ VM on remote machine
‘vm-imap:account:folder’ VM IMAP folder link
‘vm-imap:account:folder#id’ VM IMAP message link
‘wl:folder’ Wanderlust folder link
‘wl:folder#id’ Wanderlust message link

For information on customizing Org to add new link types, see Section A.3 [Adding
Hyperlink Types], page 278.

A link should be enclosed in double brackets and may contain descriptive text to be
displayed instead of the URL (see Section 4.1 [Link Format], page 39), for example:

[[https://www.gnu.org/software/emacs/][GNU Emacs]]

If the description is a file name or URL that points to an image, HTML export (see
Section 13.9 [HTML Export], page 166) inlines the image as a clickable button. If there is
no description at all and the link points to an image, that image is inlined into the exported
HTML file.

Org also recognizes external links amid normal text and activates them as links. If spaces
must be part of the link (for example in ‘bbdb:R.*Stallman’), or if you need to remove
ambiguities about the end of the link, enclose the link in square or angular brackets.

4.5 Handling Links

Org provides methods to create a link in the correct syntax, to insert it into an Org file,
and to follow the link.

The main function is org-store-link, called with M-x org-store-link. Because of its
importance, we suggest binding it to a widely available key (see Section 1.3 [Activation],
page 3). It stores a link to the current location. The link is stored for later insertion into
an Org buffer—see below. The kind of link that is created depends on the current buffer:

Org mode buffers
For Org files, if there is a ‘<<target>>’ at point, the link points to the target. If
there is a named block (using ‘#+name:’) at point, the link points to that name.
Otherwise, it points to the current headline, which is also the description.

If the headline has a ‘CUSTOM_ID’ property, store a link to this custom ID. In
addition or alternatively, depending on the value of org-id-link-to-org-use-

Chapter 4: Hyperlinks 44

id, create and/or use a globally unique ‘ID’ property for the link7. So using
this command in Org buffers potentially creates two links: a human-readable
link from the custom ID, and one that is globally unique and works even if
the entry is moved from file to file. The ‘ID’ property can be either a UUID
(default) or a timestamp, depending on org-id-method. Later, when inserting
the link, you need to decide which one to use.

When org-id-link-consider-parent-id is t8, parent ‘ID’ properties are con-
sidered. This allows linking to specific targets, named blocks, or headlines
(which may not have a globally unique ‘ID’ themselves) within the context of
a parent headline or file which does.

For example, given this org file:

* Parent

:PROPERTIES:

:ID: abc

:END:

** Child 1

** Child 2

Storing a link with point at “Child 1” will produce a link ‘<id:abc::*Child
1>’, which precisely links to the “Child 1” headline even though it does not
have its own ID.

Email/News clients: VM, Rmail, Wanderlust, MH-E, Gnus
Pretty much all Emacs mail clients are supported. The link points to the current
article, or, in some Gnus buffers, to the group. The description is constructed
according to the variable org-link-email-description-format. By default,
it refers to the addressee and the subject.

Web browsers: W3M and EWW
Here the link is the current URL, with the page title as the description.

Contacts: BBDB
Links created in a BBDB buffer point to the current entry.

Chat: IRC
For IRC links, if the variable org-irc-link-to-logs is non-nil, create a ‘file’
style link to the relevant point in the logs for the current conversation. Other-
wise, store an ‘irc’ style link to the user/channel/server under the point.

Other files For any other file, the link points to the file, with a search string (see Section 4.8
[Search Options], page 47) pointing to the contents of the current line. If there
is an active region, the selected words form the basis of the search string. You
can write custom Lisp functions to select the search string and perform the
search for particular file types (see Section 4.9 [Custom Searches], page 48).

You can also define dedicated links to other files. See Section A.3 [Adding
Hyperlink Types], page 278.

7 The org-id library must first be loaded, either through org-customize, by enabling id in org-modules,
or by adding ‘(require 'org-id)’ in your Emacs init file.

8 Also, org-link-context-for-files and org-id-link-use-context should be both enabled (which
they are, by default).

Chapter 4: Hyperlinks 45

Agenda view
When point is in an agenda view, the created link points to the entry referenced
by the current line.

From an Org buffer, the following commands create, navigate or, more generally, act on
links.

C-c C-l (org-insert-link)
Insert a link9. This prompts for a link to be inserted into the buffer. You can
just type a link, using text for an internal link, or one of the link type prefixes
mentioned in the examples above. The link is inserted into the buffer, along
with a descriptive text10. If some text was selected at this time, it becomes the
default description.

Inserting stored links
All links stored during the current session are part of the history
for this prompt, so you can access them with UP and DOWN (or M-p,
M-n).

Completion support
Completion with TAB helps you to insert valid link prefixes like
‘http’ or ‘ftp’, including the prefixes defined through link abbre-
viations (see Section 4.7 [Link Abbreviations], page 47). If you
press RET after inserting only the prefix, Org offers specific comple-
tion support for some link types11. For example, if you type f i l

e RET—alternative access: C-u C-c C-l, see below—Org offers file
name completion, and after b b d b RET you can complete contact
names.

C-u C-c C-l

When C-c C-l is called with a C-u prefix argument, insert a link to a file. You
may use file name completion to select the name of the file. The path to the
file is inserted relative to the directory of the current Org file, if the linked file
is in the current directory or in a subdirectory of it, or if the path is written
relative to the current directory using ‘../’. Otherwise, an absolute path is
used, if possible with ‘~/’ for your home directory. You can force an absolute
path with two C-u prefixes.

C-c C-l (with point on existing link)
When point is on an existing link, C-c C-l allows you to edit the link and
description parts of the link.

C-c C-o (org-open-at-point)
Open link at point. This launches a web browser for URL (using
browse-url-at-point), run VM/MH-E/Wanderlust/Rmail/Gnus/BBDB for

9 Note that you do not have to use this command to insert a link. Links in Org are plain text, and you
can type or paste them straight into the buffer. By using this command, the links are automatically
enclosed in double brackets, and you will be asked for the optional descriptive text.

10 After insertion of a stored link, the link will be removed from the list of stored links. To keep it in the
list for later use, use a triple C-u prefix argument to C-c C-l, or configure the option org-link-keep-

stored-after-insertion.
11 This works if a function has been defined in the :complete property of a link in org-link-parameters.

Chapter 4: Hyperlinks 46

the corresponding links, and execute the command in a shell link. When point
is on an internal link, this command runs the corresponding search. When
point is on the tags part of a headline, it creates the corresponding tags view
(see Section 11.3.3 [Matching tags and properties], page 118). If point is on a
timestamp, it compiles the agenda for that date. Furthermore, it visits text
and remote files in ‘file’ links with Emacs and select a suitable application
for local non-text files. Classification of files is based on file extension only.
See option org-file-apps. If you want to override the default application
and visit the file with Emacs, use a C-u prefix. If you want to avoid opening
in Emacs, use a C-u C-u prefix.

If point is on a headline, but not on a link, offer all links in the headline and
entry text. If you want to set up the frame configuration for following links,
customize org-link-frame-setup.

RET When org-return-follows-link is set, RET also follows the link at point.

mouse-2 or mouse-1
On links, mouse-1 and mouse-2 opens the link just as C-c C-o does.

mouse-3 Like mouse-2, but force file links to be opened with Emacs, and internal links
to be displayed in another window12.

C-c % (org-mark-ring-push)
Push the current position onto the Org mark ring, to be able to return easily.
Commands following an internal link do this automatically.

C-c & (org-mark-ring-goto)
Jump back to a recorded position. A position is recorded by the commands
following internal links, and by C-c %. Using this command several times in
direct succession moves through a ring of previously recorded positions.

C-c C-x C-n (org-next-link), C-c C-x C-p (org-previous-link)
Move forward/backward to the next link in the buffer. At the limit of the
buffer, the search fails once, and then wraps around. The key bindings for this
are really too long; you might want to bind this also to M-n and M-p.

(with-eval-after-load 'org

(define-key org-mode-map (kbd "M-n") #'org-next-link)

(define-key org-mode-map (kbd "M-p") #'org-previous-link))

4.6 Using Links Outside Org

You can insert and follow links that have Org syntax not only in Org, but in any Emacs
buffer. For this, Org provides two functions: org-insert-link-global and org-open-at-

point-global.

You might want to bind them to globally available keys. See Section 1.3 [Activation],
page 3 for some advice.

12 See the variable org-link-use-indirect-buffer-for-internals.

Chapter 4: Hyperlinks 47

4.7 Link Abbreviations

Long URL can be cumbersome to type, and often many similar links are needed in a
document. For this you can use link abbreviations. An abbreviated link looks like this

[[linkword:tag][description]]

where the tag is optional. The linkword must be a word, starting with a letter, followed by
letters, numbers, ‘-’, and ‘_’. Abbreviations are resolved according to the information in
the variable org-link-abbrev-alist that relates the linkwords to replacement text. Here
is an example:

(setq org-link-abbrev-alist

'(("bugzilla" . "https://10.1.2.9/bugzilla/show_bug.cgi?id=")

("Nu Html Checker" . "https://validator.w3.org/nu/?doc=%h")

("duckduckgo" . "https://duckduckgo.com/?q=%s")

("omap" . "https://nominatim.openstreetmap.org/search?q=%s&polygon=1")

("ads" . "https://ui.adsabs.harvard.edu/search/q=%20author%3A\"%s\"")))

If the replacement text contains the string ‘%s’, it is replaced with the tag. Using ‘%h’
instead of ‘%s’ percent-encodes the tag (see the example above, where we need to encode
the URL parameter). Using ‘%(my-function)’ passes the tag to a custom Lisp function,
and replace it by the resulting string.

If the replacement text does not contain any specifier, it is simply appended to the string
in order to create the link.

Instead of a string, you may also specify a Lisp function to create the link. Such a
function will be called with the tag as the only argument.

With the above setting, you could link to a specific bug with ‘[[bugzilla:129]]’,
search the web for ‘OrgMode’ with ‘[[duckduckgo:OrgMode]]’, show the map location of
the Free Software Foundation ‘[[omap:31 Milk Street, Boston]]’ or of Carsten’s office
‘[[omap:Science Park 904, Amsterdam, The Netherlands]]’ and find out what the Org
author is doing besides Emacs hacking with ‘[[ads:Dominik,C]]’.

If you need special abbreviations just for a single Org buffer, you can define them in the
file with

#+LINK: bugzilla https://10.1.2.9/bugzilla/show_bug.cgi?id=

#+LINK: duckduckgo https://duckduckgo.com/?q=%s

#+LINK: "Nu Html Checker" https://validator.w3.org/nu/?doc=%h

The abbreviations containing spaces must be quoted.

In-buffer completion (see Section 17.1 [Completion], page 258) can be used after ‘[’ to
complete link abbreviations. You may also define a Lisp function that implements special
(e.g., completion) support for inserting such a link with C-c C-l. Such a function should
not accept any arguments, and should return the full link with a prefix. You can set the
link completion function like this:

(org-link-set-parameter "type" :complete #'some-completion-function)

4.8 Search Options in File Links

File links can contain additional information to make Emacs jump to a particular location
in the file when following a link. This can be a line number or a search option after a double

Chapter 4: Hyperlinks 48

colon13. For example, when the command org-store-link creates a link (see Section 4.5
[Handling Links], page 43) to a file, it encodes the words in the current line as a search
string that can be used to find this line back later when following the link with C-c C-o.

Note that all search options apply for Attachment and ID links in the same way that
they apply for File links.

Here is the syntax of the different ways to attach a search to a file link, together with
explanations for each:

[[file:~/code/main.c::255]]

[[file:~/xx.org::My Target]]

[[file:~/xx.org::*My Target]]

[[file:~/xx.org::#my-custom-id]]

[[file:~/xx.org::/regexp/]]

[[attachment:main.c::255]]

‘255’ Jump to line 255.

‘My Target’
Search for a link target ‘<<My Target>>’, or do a text search for ‘my target’,
similar to the search in internal links, see Section 4.2 [Internal Links], page 40.
In HTML export (see Section 13.9 [HTML Export], page 166), such a file link
becomes an HTML reference to the corresponding named anchor in the linked
file.

‘*My Target’
In an Org file, restrict search to headlines.

‘#my-custom-id’
Link to a heading with a ‘CUSTOM_ID’ property

‘/REGEXP/’
Do a regular expression search for REGEXP (see Section 17.9 [Regular Expres-
sions], page 265). This uses the Emacs command occur to list all matches in a
separate window. If the target file is in Org mode, org-occur is used to create
a sparse tree with the matches.

As a degenerate case, a file link with an empty file name can be used to search the
current file. For example, ‘[[file:::find me]]’ does a search for ‘find me’ in the current
file, just as ‘[[find me]]’ would.

4.9 Custom Searches

The default mechanism for creating search strings and for doing the actual search related
to a file link may not work correctly in all cases. For example, BibTEX database files have
many entries like year="1993" which would not result in good search strings, because the
only unique identification for a BibTEX entry is the citation key.

If you come across such a problem, you can write custom functions to set the right
search string for a particular file type, and to do the search for the string in the file.

13 For backward compatibility, line numbers can also follow a single colon.

Chapter 4: Hyperlinks 49

Using add-hook, these functions need to be added to the hook variables org-create-

file-search-functions and org-execute-file-search-functions. See the docstring
for these variables for more information. Org actually uses this mechanism for BibTEX
database files, and you can use the corresponding code as an implementation example. See
the file ‘ol-bibtex.el’.

Chapter 5: TODO Items 50

5 TODO Items

Org mode does not maintain TODO lists as separate documents1. Instead, TODO items
are an integral part of the notes file, because TODO items usually come up while taking
notes! With Org mode, simply mark any entry in a tree as being a TODO item. In this way,
information is not duplicated, and the entire context from which the TODO item emerged
is always present.

Of course, this technique for managing TODO items scatters them throughout your
notes file. Org mode compensates for this by providing methods to give you an overview of
all the things that you have to do.

5.1 Basic TODO Functionality

Any headline becomes a TODO item when it starts with the word ‘TODO’, for example:

*** TODO Write letter to Sam Fortune

The most important commands to work with TODO entries are:

C-c C-t (org-todo)
Rotate the TODO state of the current item among

,-> (unmarked) -> TODO -> DONE --.

'--------------------------------'

If TODO keywords have fast access keys (see Section 5.2.4 [Fast access to TODO
states], page 53), prompt for a TODO keyword through the fast selection in-
terface; this is the default behavior when org-use-fast-todo-selection is
non-nil.

The same state changing can also be done “remotely” from the agenda buffer
with the t command key (see Section 11.5 [Agenda Commands], page 126).

S-RIGHT S-LEFT

Select the following/preceding TODO state, similar to cycling. Useful mostly if
more than two TODO states are possible (see Section 5.2 [TODO Extensions],
page 51). See also Section 17.14.2 [Conflicts], page 268, for a discussion of the
interaction with shift-selection. See also the variable org-treat-S-cursor-

todo-selection-as-state-change.

C-c / t (org-show-todo-tree)
View TODO items in a sparse tree (see Section 2.5 [Sparse Trees], page 12).
Folds the entire buffer, but shows all TODO items—with not-DONE state—
and the headings hierarchy above them. With a prefix argument, or by using
C-c / T, search for a specific TODO. You are prompted for the keyword, and
you can also give a list of keywords like ‘KWD1|KWD2|...’ to list entries that
match any one of these keywords. With a numeric prefix argument N, show the
tree for the Nth keyword in the variable org-todo-keywords. With two prefix
arguments, find all TODO states, both un-done and done.

1 Of course, you can make a document that contains only long lists of TODO items, but this is not
required.

Chapter 5: TODO Items 51

M-x org-agenda t (org-todo-list)
Show the global TODO list. Collects the TODO items (with not-DONE states)
from all agenda files (see Chapter 11 [Agenda Views], page 112) into a sin-
gle buffer. The new buffer is in Org Agenda mode, which provides com-
mands to examine and manipulate the TODO entries from the new buffer (see
Section 11.5 [Agenda Commands], page 126). See Section 11.3.2 [Global TODO
list], page 117, for more information.

S-M-RET (org-insert-todo-heading)
Insert a new TODO entry below the current one.

Changing a TODO state can also trigger tag changes. See the docstring of the option
org-todo-state-tags-triggers for details.

5.2 Extended Use of TODO Keywords

By default, marked TODO entries have one of only two states: TODO and DONE. Org
mode allows you to classify TODO items in more complex ways with TODO keywords
(stored in org-todo-keywords). With special setup, the TODO keyword system can work
differently in different files.

Note that tags are another way to classify headlines in general and TODO items in
particular (see Chapter 6 [Tags], page 63).

5.2.1 TODO keywords as workflow states

You can use TODO keywords to indicate different, possibly sequential states in the process
of working on an item, for example2:

(setq org-todo-keywords

'((sequence "TODO" "FEEDBACK" "VERIFY" "|" "DONE" "DELEGATED")))

The vertical bar separates the TODO keywords (states that need action) from the DONE
states (which need no further action). If you do not provide the separator bar, the last state
is used as the DONE state.

With this setup, the command C-c C-t cycles an entry from ‘TODO’ to ‘FEEDBACK’, then to
‘VERIFY’, and finally to ‘DONE’ and ‘DELEGATED’. You may also use a numeric prefix argument
to quickly select a specific state. For example C-3 C-c C-t changes the state immediately
to ‘VERIFY’. Or you can use S-RIGHT and S-LEFT to go forward and backward through the
states. If you define many keywords, you can use in-buffer completion (see Section 17.1
[Completion], page 258) or a special one-key selection scheme (see Section 5.2.4 [Fast access
to TODO states], page 53) to insert these words into the buffer. Changing a TODO state
can be logged with a timestamp, see Section 5.3.2 [Tracking TODO state changes], page 55,
for more information.

5.2.2 TODO keywords as types

The second possibility is to use TODO keywords to indicate different types of action items.
For example, you might want to indicate that items are for “work” or “home”. Or, when
you work with several people on a single project, you might want to assign action items

2 Changing the variable org-todo-keywords only becomes effective after restarting Org mode in a buffer.

Chapter 5: TODO Items 52

directly to persons, by using their names as TODO keywords. This type of functionality is
actually much better served by using tags (see Chapter 6 [Tags], page 63), so the TODO
implementation is kept just for backward compatibility.

Using TODO types, it would be set up like this:

(setq org-todo-keywords '((type "Fred" "Sara" "Lucy" "|" "DONE")))

In this case, different keywords do not indicate states, but rather different types. So the
normal work flow would be to assign a task to a person, and later to mark it DONE. Org
mode supports this style by adapting the workings of the command C-c C-t3. When used
several times in succession, it still cycles through all names, in order to first select the right
type for a task. But when you return to the item after some time and execute C-c C-t

again, it will switch from any name directly to ‘DONE’. Use prefix arguments or completion
to quickly select a specific name. You can also review the items of a specific TODO type
in a sparse tree by using a numeric prefix to C-c / t. For example, to see all things Lucy
has to do, you would use C-3 C-c / t. To collect Lucy’s items from all agenda files into a
single buffer, you would use the numeric prefix argument as well when creating the global
TODO list: C-3 M-x org-agenda t.

5.2.3 Multiple keyword sets in one file

Sometimes you may want to use different sets of TODO keywords in parallel. For example,
you may want to have the basic TODO/DONE, but also a workflow for bug fixing, and a
separate state indicating that an item has been canceled—so it is not DONE, but also does
not require action. Your setup would then look like this:

(setq org-todo-keywords

'((sequence "TODO" "|" "DONE")

(sequence "REPORT" "BUG" "KNOWNCAUSE" "|" "FIXED")

(sequence "|" "CANCELED")))

The keywords should all be different, this helps Org mode keep track of which subse-
quence should be used for a given entry. In this setup, C-c C-t only operates within a
sub-sequence, so it switches from ‘DONE’ to (nothing) to ‘TODO’, and from ‘FIXED’ to (noth-
ing) to ‘REPORT’. Therefore, you need a mechanism to initially select the correct sequence. In
addition to typing a keyword or using completion (see Section 17.1 [Completion], page 258),
you may also apply the following commands:

C-u C-u C-c C-t, C-S-RIGHT, C-S-LEFT
These keys jump from one TODO sub-sequence to the next. In the above
example, C-u C-u C-c C-t or C-S-RIGHT would jump from ‘TODO’ or ‘DONE’ to
‘REPORT’, and any of the words in the second row to ‘CANCELED’. Note that the
C-S- key binding conflict with shift-selection (see Section 17.14.2 [Conflicts],
page 268).

S-RIGHT, S-LEFT
S-LEFT and S-RIGHT walk through all keywords from all sub-sequences, so for
example S-RIGHT would switch from ‘DONE’ to ‘REPORT’ in the example above.
For a discussion of the interaction with shift-selection, see Section 17.14.2 [Con-
flicts], page 268.

3 This is also true for the t command in the agenda buffer.

Chapter 5: TODO Items 53

5.2.4 Fast access to TODO states

If you would like to quickly change an entry to an arbitrary TODO state instead of cycling
through the states, you can set up keys for single-letter access to the states. This is done
by adding the selection character after each keyword, in parentheses4. For example:

(setq org-todo-keywords

'((sequence "TODO(t)" "|" "DONE(d)")

(sequence "REPORT(r)" "BUG(b)" "KNOWNCAUSE(k)" "|" "FIXED(f)")

(sequence "|" "CANCELED(c)")))

If you then press C-c C-t followed by the selection key, the entry is switched to this
state. SPC can be used to remove any TODO keyword from an entry.

5.2.5 Setting up keywords for individual files

It can be very useful to use different aspects of the TODO mechanism in different files.
For file-local settings, you need to add special lines to the file which set the keywords and
interpretation for that file only. For example, to set one of the two examples discussed
above, you need one of the following lines, starting in column zero anywhere in the file:

#+TODO: TODO FEEDBACK VERIFY | DONE CANCELED

You may also write ‘#+SEQ_TODO’ to be explicit about the interpretation, but it means
the same as ‘#+TODO’, or

#+TYP_TODO: Fred Sara Lucy Mike | DONE

A setup for using several sets in parallel would be:

#+TODO: TODO(t) | DONE(d)

#+TODO: REPORT(r) BUG(b) KNOWNCAUSE(k) | FIXED(f)

#+TODO: | CANCELED(c)

To make sure you are using the correct keyword, type ‘#+’ into the buffer and then use
M-TAB to complete it (see Section 17.1 [Completion], page 258).

Remember that the keywords after the vertical bar—or the last keyword if no bar is
there—must always mean that the item is DONE, although you may use a different word.
After changing one of these lines, use C-c C-c with point still in the line to make the changes
known to Org mode5.

5.2.6 Faces for TODO keywords

Org mode highlights TODO keywords with special faces: org-todo for keywords indicating
that an item still has to be acted upon, and org-done for keywords indicating that an item
is finished. If you are using more than two different states, you might want to use special
faces for some of them. This can be done using the variable org-todo-keyword-faces. For
example:

(setq org-todo-keyword-faces

'(("TODO" . org-warning) ("STARTED" . "yellow")

("CANCELED" . (:foreground "blue" :weight bold))))

4 All characters are allowed except ‘@’, ‘^’ and ‘!’, which have a special meaning here.
5 Org mode parses these lines only when Org mode is activated after visiting a file. C-c C-c with point

in a line starting with ‘#+’ is simply restarting Org mode for the current buffer.

Chapter 5: TODO Items 54

While using a list with face properties as shown for ‘CANCELED’ should work, this does
not always seem to be the case. If necessary, define a special face and use that. A string is
interpreted as a color. The variable org-faces-easy-properties determines if that color
is interpreted as a foreground or a background color.

5.2.7 TODO dependencies

The structure of Org files—hierarchy and lists—makes it easy to define TODO dependencies.
Usually, a parent TODO task should not be marked as done until all TODO subtasks, or
children tasks, are marked as done. Sometimes there is a logical sequence to (sub)tasks, so
that one subtask cannot be acted upon before all siblings above it have been marked as done.
If you customize the variable org-enforce-todo-dependencies, Org blocks entries from
changing state to DONE while they have TODO children that are not DONE. Furthermore,
if an entry has a property ‘ORDERED’, each of its TODO children is blocked until all earlier
siblings are marked as done. Here is an example:

* TODO Blocked until (two) is done

** DONE one

** TODO two

* Parent

:PROPERTIES:

:ORDERED: t

:END:

** TODO a

** TODO b, needs to wait for (a)

** TODO c, needs to wait for (a) and (b)

You can ensure an entry is never blocked by using the ‘NOBLOCKING’ property (see
Chapter 7 [Properties and Columns], page 68):

* This entry is never blocked

:PROPERTIES:

:NOBLOCKING: t

:END:

C-c C-x o (org-toggle-ordered-property)
Toggle the ‘ORDERED’ property of the current entry. A property is used for this
behavior because this should be local to the current entry, not inherited from
entries above like a tag (see Chapter 6 [Tags], page 63). However, if you would
like to track the value of this property with a tag for better visibility, customize
the variable org-track-ordered-property-with-tag.

C-u C-u C-u C-c C-t

Change TODO state, regardless of any state blocking.

If you set the variable org-agenda-dim-blocked-tasks, TODO entries that cannot be
marked as done because of unmarked children are shown in a dimmed font or even made
invisible in agenda views (see Chapter 11 [Agenda Views], page 112).

You can also block changes of TODO states by using checkboxes (see Section 5.6 [Check-
boxes], page 60). If you set the variable org-enforce-todo-checkbox-dependencies, an
entry that has unchecked checkboxes is blocked from switching to DONE.

Chapter 5: TODO Items 55

If you need more complex dependency structures, for example dependencies between
entries in different trees or files, check out the module ‘org-depend.el’ in the ‘org-contrib’
repository.

5.3 Progress Logging

To record a timestamp and a note when changing a TODO state, call the command
org-todo with a prefix argument.

C-u C-c C-t (org-todo)
Prompt for a note and record the time of the TODO state change. The note is
inserted as a list item below the headline, but can also be placed into a drawer,
see Section 5.3.2 [Tracking TODO state changes], page 55.

If you want to be more systematic, Org mode can automatically record a timestamp and
optionally a note when you mark a TODO item as DONE, or even each time you change
the state of a TODO item. This system is highly configurable, settings can be on a per-
keyword basis and can be localized to a file or even a subtree. For information on how to
clock working time for a task, see Section 8.4 [Clocking Work Time], page 86.

5.3.1 Closing items

The most basic automatic logging is to keep track of when a certain TODO item was marked
as done. This can be achieved with6

(setq org-log-done 'time)

Then each time you turn an entry from a TODO (not-done) state into any of the DONE
states, a line ‘CLOSED: [timestamp]’ is inserted just after the headline. If you turn the
entry back into a TODO item through further state cycling, that line is removed again. If
you turn the entry back to a non-TODO state (by pressing C-c C-t SPC for example), that
line is also removed, unless you set org-closed-keep-when-no-todo to non-nil. If you
want to record a note along with the timestamp, use7

(setq org-log-done 'note)

You are then prompted for a note, and that note is stored below the entry with a ‘Closing
Note’ heading.

5.3.2 Tracking TODO state changes

You might want to automatically keep track of when a state change occurred and maybe
take a note about this change. You can either record just a timestamp, or a time-stamped
note. These records are inserted after the headline as an itemized list, the newest first8.
When taking a lot of notes, you might want to get the notes out of the way into a drawer
(see Section 2.7 [Drawers], page 16). Customize the variable org-log-into-drawer to get
this behavior—the recommended drawer for this is called ‘LOGBOOK’9. You can also overrule
the setting of this variable for a subtree by setting a ‘LOG_INTO_DRAWER’ property.

6 The corresponding in-buffer setting is: ‘#+STARTUP: logdone’.
7 The corresponding in-buffer setting is: ‘#+STARTUP: lognotedone’.
8 See the variable org-log-states-order-reversed.
9 Note that the ‘LOGBOOK’ drawer is unfolded when pressing SPC in the agenda to show an entry—use C-u
SPC to keep it folded here.

Chapter 5: TODO Items 56

Since it is normally too much to record a note for every state, Org mode expects con-
figuration on a per-keyword basis for this. This is achieved by adding special markers ‘!’
(for a timestamp) or ‘@’ (for a note with timestamp) in parentheses after each keyword. For
example, with the setting

(setq org-todo-keywords

'((sequence "TODO(t)" "WAIT(w@/!)" "|" "DONE(d!)" "CANCELED(c@)")))

You not only define global TODO keywords and fast access keys, but also request that a
time is recorded when the entry is set to ‘DONE’, and that a note is recorded when switching
to ‘WAIT’ or ‘CANCELED’10. The setting for ‘WAIT’ is even more special: the ‘!’ after the slash
means that in addition to the note taken when entering the state, a timestamp should be
recorded when leaving the ‘WAIT’ state, if and only if the target state does not configure
logging for entering it. So it has no effect when switching from ‘WAIT’ to ‘DONE’, because
‘DONE’ is configured to record a timestamp only. But when switching from ‘WAIT’ back to
‘TODO’, the ‘/!’ in the ‘WAIT’ setting now triggers a timestamp even though ‘TODO’ has no
logging configured.

You can use the exact same syntax for setting logging preferences local to a buffer:

#+TODO: TODO(t) WAIT(w@/!) | DONE(d!) CANCELED(c@)

To record a timestamp without a note for TODO keywords configured with ‘@’, just type
C-c C-c to enter a blank note when prompted.

In order to define logging settings that are local to a subtree or a single item, define
a ‘LOGGING’ property in this entry. Any non-empty ‘LOGGING’ property resets all logging
settings to nil. You may then turn on logging for this specific tree using ‘STARTUP’ keywords
like ‘lognotedone’ or ‘logrepeat’, as well as adding state specific settings like ‘TODO(!)’.
For example:

* TODO Log each state with only a time

:PROPERTIES:

:LOGGING: TODO(!) WAIT(!) DONE(!) CANCELED(!)

:END:

* TODO Only log when switching to WAIT, and when repeating

:PROPERTIES:

:LOGGING: WAIT(@) logrepeat

:END:

* TODO No logging at all

:PROPERTIES:

:LOGGING: nil

:END:

5.3.3 Tracking your habits

Org has the ability to track the consistency of a special category of TODO, called
“habits.” To use habits, you have to enable the habit module by customizing the variable
org-modules.

A habit has the following properties:

10 It is possible that Org mode records two timestamps when you are using both org-log-done and state
change logging. However, it never prompts for two notes: if you have configured both, the state change
recording note takes precedence and cancel the closing note.

Chapter 5: TODO Items 57

1. The habit is a TODO item, with a TODO keyword representing an open state.

2. The property ‘STYLE’ is set to the value ‘habit’ (see Chapter 7 [Properties and
Columns], page 68).

3. The TODO has a scheduled date, usually with a ‘.+’ style repeat interval. A ‘++’ style
may be appropriate for habits with time constraints, e.g., must be done on specific
days of week (‘++1w’), or a ‘+’ style for an unusual habit that can have a backlog, e.g.,
weekly reports. See Section 8.3.2 [Repeated tasks], page 85 for more details about
repeat intervals.

4. The TODO may also have minimum and maximum ranges specified by using the syntax
‘.+2d/3d’, which says that you want to do the task at least every three days, but, at
most, every two days.

5. State logging for the DONE state is enabled (see Section 5.3.2 [Tracking TODO state
changes], page 55), in order for historical data to be represented in the consistency
graph. If it is not enabled it is not an error, but the consistency graphs are largely
meaningless.

To give you an idea of what the above rules look like in action, here’s an actual habit
with some history:

** TODO Shave

SCHEDULED: <2009-10-17 Sat .+2d/4d>

:PROPERTIES:

:STYLE: habit

:LAST_REPEAT: [2009-10-19 Mon 00:36]

:END:

- State "DONE" from "TODO" [2009-10-15 Thu]

- State "DONE" from "TODO" [2009-10-12 Mon]

- State "DONE" from "TODO" [2009-10-10 Sat]

- State "DONE" from "TODO" [2009-10-04 Sun]

- State "DONE" from "TODO" [2009-10-02 Fri]

- State "DONE" from "TODO" [2009-09-29 Tue]

- State "DONE" from "TODO" [2009-09-25 Fri]

- State "DONE" from "TODO" [2009-09-19 Sat]

- State "DONE" from "TODO" [2009-09-16 Wed]

- State "DONE" from "TODO" [2009-09-12 Sat]

What this habit says is: I want to shave, at most, every 2 days—given by the ‘SCHEDULED’
date and repeat interval—and at least every 4 days. If today is the 15th, then the habit
first appears in the agenda (see Chapter 11 [Agenda Views], page 112) on Oct 17, after the
minimum of 2 days has elapsed, and will appear overdue on Oct 19, after four days have
elapsed.

What’s really useful about habits is that they are displayed along with a consistency
graph, to show how consistent you’ve been at getting that task done in the past. This
graph shows every day that the task was done over the past three weeks, with colors for
each day. The colors used are:

Blue If the task was not to be done yet on that day.

Green If the task could have been done on that day.

Chapter 5: TODO Items 58

Yellow If the task was going to be overdue the next day.

Red If the task was overdue on that day.

In addition to coloring each day, the day is also marked with an asterisk if the task was
actually done that day, and an exclamation mark to show where the current day falls in the
graph.

There are several configuration variables that can be used to change the way habits are
displayed in the agenda.

org-habit-graph-column

The buffer column at which the consistency graph should be drawn. This
overwrites any text in that column, so it is a good idea to keep your habits’
titles brief and to the point.

org-habit-preceding-days

The amount of history, in days before today, to appear in consistency graphs.

org-habit-following-days

The number of days after today that appear in consistency graphs.

org-habit-show-habits-only-for-today

If non-nil, only show habits in today’s agenda view. The default value is t.
Pressing C-u K in the agenda toggles this variable.

Lastly, pressing K in the agenda buffer causes habits to temporarily be disabled and do
not appear at all. Press K again to bring them back. They are also subject to tag filtering,
if you have habits which should only be done in certain contexts, for example.

5.4 Priorities

If you use Org mode extensively, you may end up with enough TODO items that it starts
to make sense to prioritize them. Prioritizing can be done by placing a priority cookie into
the headline of a TODO item right after the TODO keyword, like this:

*** TODO [#A] Write letter to Sam Fortune

By default, Org mode supports three priorities: ‘A’, ‘B’, and ‘C’. ‘A’ is the highest
priority. An entry without a cookie is treated as equivalent if it had priority ‘B’. Priorities
make a difference only for sorting in the agenda (see Section 11.3.1 [Weekly/daily agenda],
page 114). Outside the agenda, they have no inherent meaning to Org mode. The cookies
are displayed with the face defined by the variable org-priority-faces, which can be
customized.

You can also use numeric values for priorities, such as

*** TODO [#1] Write letter to Sam Fortune

When using numeric priorities, you need to set org-priority-highest, org-priority-
lowest and org-priority-default to integers, which must all be strictly inferior to 65.

Priorities can be attached to any heading; they do not need to be TODO items.

C-c , (org-priority)
Set the priority of the current headline. The command prompts for a priority
character ‘A’, ‘B’ or ‘C’. When you press SPC instead, the priority cookie, if one

Chapter 5: TODO Items 59

is set, is removed from the headline. The priorities can also be changed “re-
motely” from the agenda buffer with the , command (see Section 11.5 [Agenda
Commands], page 126).

S-UP (org-priority-up)
S-DOWN (org-priority-down)

Increase/decrease the priority of the current headline11. Note that these keys
are also used to modify timestamps (see Section 8.2 [Creating Timestamps],
page 79). See also Section 17.14.2 [Conflicts], page 268, for a discussion of the
interaction with shift-selection.

You can change the range of allowed priorities by setting the variables org-priority-
highest, org-priority-lowest, and org-priority-default. For an individual buffer,
you may set these values (highest, lowest, default) like this (please make sure that the
highest priority is earlier in the alphabet than the lowest priority):

#+PRIORITIES: A C B

Or, using numeric values:

#+PRIORITIES: 1 10 5

5.5 Breaking Down Tasks into Subtasks

It is often advisable to break down large tasks into smaller, manageable subtasks. You
can do this by creating an outline tree below a TODO item, with detailed subtasks on the
tree12. To keep an overview of the fraction of subtasks that have already been marked as
done, insert either ‘[/]’ or ‘[%]’ anywhere in the headline. These cookies are updated each
time the TODO status of a child changes, or when pressing C-c C-c on the cookie. For
example:

* Organize Party [33%]

** TODO Call people [1/2]

*** TODO Peter

*** DONE Sarah

** TODO Buy food

** DONE Talk to neighbor

If a heading has both checkboxes and TODO children below it, the meaning of the
statistics cookie become ambiguous. Set the property ‘COOKIE_DATA’ to either ‘checkbox’
or ‘todo’ to resolve this issue.

If you would like to have the statistics cookie count any TODO entries in the subtree (not
just direct children), configure the variable org-hierarchical-todo-statistics. To do
this for a single subtree, include the word ‘recursive’ into the value of the ‘COOKIE_DATA’
property.

* Parent capturing statistics [2/20]

:PROPERTIES:

:COOKIE_DATA: todo recursive

:END:

11 See also the option org-priority-start-cycle-with-default.
12 To keep subtasks out of the global TODO list, see the option org-agenda-todo-list-sublevels.

Chapter 5: TODO Items 60

If you would like a TODO entry to automatically change to DONE when all children
are done, you can use the following setup:

(defun org-summary-todo (n-done n-not-done)

"Switch entry to DONE when all subentries are done, to TODO otherwise."

(let (org-log-done org-todo-log-states) ; turn off logging

(org-todo (if (= n-not-done 0) "DONE" "TODO"))))

(add-hook 'org-after-todo-statistics-hook #'org-summary-todo)

Another possibility is the use of checkboxes to identify (a hierarchy of) subtasks (see
Section 5.6 [Checkboxes], page 60).

5.6 Checkboxes

Every item in a plain list13 (see Section 2.6 [Plain Lists], page 13) can be made into a
checkbox by starting it with the string ‘[]’. This feature is similar to TODO items (see
Chapter 5 [TODO Items], page 50), but is more lightweight. Checkboxes are not included
into the global TODO list, so they are often great to split a task into a number of simple
steps. Or you can use them in a shopping list.

Here is an example of a checkbox list.

* TODO Organize party [2/4]

- [-] call people [1/3]

- [] Peter

- [X] Sarah

- [] Sam

- [X] order food

- [] think about what music to play

- [X] talk to the neighbors

The ‘[2/4]’ and ‘[1/3]’ in the first and second line are cookies indicating how many
checkboxes present in this entry have been checked off, and the total number of checkboxes
present. This can give you an idea on how many checkboxes remain, even without opening a
folded entry. The cookies can be placed into a headline or into (the first line of) a plain list
item. Each cookie covers checkboxes of direct children structurally below the headline/item
on which the cookie appears14. You have to insert the cookie yourself by typing either ‘[/]’
or ‘[%]’. With ‘[/]’ you get an ‘n out of m’ result, as in the examples above. With ‘[%]’
you get information about the percentage of checkboxes checked (in the above example,
this would be ‘[50%]’ and ‘[33%]’, respectively). In a headline, a cookie can count either
checkboxes below the heading or TODO states of children, and it displays whatever was
changed last. Set the property ‘COOKIE_DATA’ to either ‘checkbox’ or ‘todo’ to resolve this
issue.

If the current heading has an ‘ORDERED’ property, checkboxes must be checked off in
sequence, and an error is thrown if you try to check off a box while there are unchecked
boxes above it.

A checkbox can be in one of the three states:

13 Except for description lists. But you can allow it by modifying org-list-automatic-rules accordingly.
14 Set the variable org-checkbox-hierarchical-statistics if you want such cookies to count all check-

boxes below the cookie, not just those belonging to direct children.

Chapter 5: TODO Items 61

1. not checked ‘[]’

2. partially checked ‘[-]’

3. checked ‘[X]’

Checkboxes work hierarchically, so if a checkbox item has children that are checkboxes,
toggling one of the children checkboxes makes the parent checkbox reflect if none, some, or
all of the children are checked.

If all child checkboxes are not checked, the parent checkbox is also not checked.

- [] call people

- [] Peter

- [] Sarah

If some but not all child checkboxes are checked, the parent checkbox is partially checked.

- [-] call people

- [X] Peter

- [] Sarah

If all child checkboxes are checked, the parent checkbox is also checked.

- [X] call people

- [X] Peter

- [X] Sarah

The following commands work with checkboxes:

C-c C-c (org-toggle-checkbox)
Toggle checkbox status or—with prefix argument—checkbox presence at point.
With a single prefix argument, add an empty checkbox or remove the current
one15. With a double prefix argument, set it to ‘[-]’, which is considered to be
an intermediate state.

C-c C-x C-b (org-toggle-checkbox)
Toggle checkbox status or—with prefix argument—checkbox presence at point.
With double prefix argument, set it to ‘[-]’, which is considered to be an
intermediate state.

• If there is an active region, toggle the first checkbox in the region and set
all remaining boxes to the same status as the first. With a prefix argument,
add or remove the checkbox for all items in the region.

• If point is in a headline, toggle checkboxes in the region between this head-
line and the next—so not the entire subtree.

• If there is no active region, just toggle the checkbox at point.

C-c C-x C-r (org-toggle-radio-button)
Toggle checkbox status by using the checkbox of the item at point as a radio
button: when the checkbox is turned on, all other checkboxes on the same level
will be turned off. With a universal prefix argument, toggle the presence of the
checkbox. With a double prefix argument, set it to ‘[-]’.

C-c C-c can be told to consider checkboxes as radio buttons by set-
ting ‘#+ATTR_ORG: :radio t’ right before the list or by calling M-x

org-list-checkbox-radio-mode to activate this minor mode.

15 C-u C-c C-c on the first item of a list with no checkbox adds checkboxes to the rest of the list.

Chapter 5: TODO Items 62

M-S-RET (org-insert-todo-heading)
Insert a new item with a checkbox. This works only if point is already in a
plain list item (see Section 2.6 [Plain Lists], page 13).

C-c C-x o (org-toggle-ordered-property)
Toggle the ‘ORDERED’ property of the entry, to toggle if checkboxes must be
checked off in sequence. A property is used for this behavior because this
should be local to the current entry, not inherited like a tag. However, if you
would like to track the value of this property with a tag for better visibility,
customize org-track-ordered-property-with-tag.

C-c # (org-update-statistics-cookies)
Update the statistics cookie in the current outline entry. When called with
a C-u prefix, update the entire file. Checkbox statistic cookies are updated
automatically if you toggle checkboxes with C-c C-c and make new ones with
M-S-RET. TODO statistics cookies update when changing TODO states. If you
delete boxes/entries or add/change them by hand, use this command to get
things back into sync.

Chapter 6: Tags 63

6 Tags

An excellent way to implement labels and contexts for cross-correlating information is to
assign tags to headlines. Org mode has extensive support for tags.

Every headline can contain a list of tags; they occur at the end of the headline. Tags are
normal words containing letters, numbers, ‘_’, and ‘@’. Tags must be preceded and followed
by a single colon, e.g., ‘:work:’. Several tags can be specified, as in ‘:work:urgent:’. Tags
by default are in bold face with the same color as the headline. You may specify special
faces for specific tags using the variable org-tag-faces, in much the same way as you can
for TODO keywords (see Section 5.2.6 [Faces for TODO keywords], page 53).

6.1 Tag Inheritance

Tags make use of the hierarchical structure of outline trees. If a heading has a certain tag,
all subheadings inherit the tag as well. For example, in the list

* Meeting with the French group :work:

** Summary by Frank :boss:notes:

*** TODO Prepare slides for him :action:

the final heading has the tags ‘work’, ‘boss’, ‘notes’, and ‘action’ even though the final
heading is not explicitly marked with those tags. You can also set tags that all entries
in a file should inherit just as if these tags were defined in a hypothetical level zero that
surrounds the entire file. Use a line like this1

#+FILETAGS: :Peter:Boss:Secret:

To limit tag inheritance to specific tags, or to turn it off entirely, use the variables
org-use-tag-inheritance and org-tags-exclude-from-inheritance.

Tag inheritance is relevant when the agenda search tries to match a tag, either in the
tags or tags-todo agenda types. In other agenda types, org-use-tag-inheritance has
no effect. Still, you may want to have your tags correctly set in the agenda, so that tag
filtering works fine, with inherited tags. Set org-agenda-use-tag-inheritance to control
this: the default value includes all agenda types, but setting this to nil can really speed
up agenda generation.

6.2 Setting Tags

Tags can simply be typed into the buffer at the end of a headline. After a colon, M-TAB
offers completion on tags. There is also a special command for inserting tags:

C-c C-q (org-set-tags-command)
Enter new tags for the current headline. Org mode either offers completion or
a special single-key interface for setting tags, see below. After pressing RET, the
tags are inserted and aligned to org-tags-column. When called with a C-u

prefix, all tags in the current buffer are aligned to that column, just to make
things look nice. Tags are automatically realigned after promotion, demotion,
and TODO state changes (see Section 5.1 [TODO Basics], page 50).

1 As with all these in-buffer settings, pressing C-c C-c activates any changes in the line.

Chapter 6: Tags 64

C-c C-c (org-set-tags-command)
When point is in a headline, this does the same as C-c C-q.

Org supports tag insertion based on a list of tags. By default, this list is constructed
dynamically, containing all tags currently used in the buffer2. You may also globally specify
a hard list of tags with the variable org-tag-alist. Finally, you can set the default tags
for a given file using the ‘TAGS’ keyword, like

#+TAGS: @work @home @tennisclub

#+TAGS: laptop car pc sailboat

If you have globally defined your preferred set of tags using the variable org-tag-alist,
but would like to use a dynamic tag list in a specific file, add an empty ‘TAGS’ keyword to
that file:

#+TAGS:

If you have a preferred set of tags that you would like to use in every file, in addition
to those defined on a per-file basis by ‘TAGS’ keyword, then you may specify a list of tags
with the variable org-tag-persistent-alist. You may turn this off on a per-file basis by
adding a ‘STARTUP’ keyword to that file:

#+STARTUP: noptag

By default, Org mode uses the standard minibuffer completion facilities for entering tags.
However, it also implements another, quicker, tag selection method called fast tag selection.
This allows you to select and deselect tags with just a single key press. For this to work
well you should assign unique letters to most of your commonly used tags. You can do this
globally by configuring the variable org-tag-alist in your Emacs init file. For example,
you may find the need to tag many items in different files with ‘@home’. In this case you
can set something like:

(setq org-tag-alist '(("@work" . ?w) ("@home" . ?h) ("laptop" . ?l)))

If the tag is only relevant to the file you are working on, then you can instead set the
‘TAGS’ keyword as:

#+TAGS: @work(w) @home(h) @tennisclub(t) laptop(l) pc(p)

The tags interface shows the available tags in a splash window. If you want to start a
new line after a specific tag, insert ‘\n’ into the tag list

#+TAGS: @work(w) @home(h) @tennisclub(t) \n laptop(l) pc(p)

or write them in two lines:

#+TAGS: @work(w) @home(h) @tennisclub(t)

#+TAGS: laptop(l) pc(p)

You can also group together tags that are mutually exclusive by using braces, as in:

#+TAGS: { @work(w) @home(h) @tennisclub(t) } laptop(l) pc(p)

you indicate that at most one of ‘@work’, ‘@home’, and ‘@tennisclub’ should be selected.
Multiple such groups are allowed.

Do not forget to press C-c C-c with point in one of these lines to activate any changes.

2 To extend this default list to all tags used in all agenda files (see Chapter 11 [Agenda Views], page 112),
customize the variable org-complete-tags-always-offer-all-agenda-tags.

Chapter 6: Tags 65

To set these mutually exclusive groups in the variable org-tags-alist, you must use
the dummy tags :startgroup and :endgroup instead of the braces. Similarly, you can
use :newline to indicate a line break. The previous example would be set globally by the
following configuration:

(setq org-tag-alist '((:startgroup . nil)

("@work" . ?w) ("@home" . ?h)

("@tennisclub" . ?t)

(:endgroup . nil)

("laptop" . ?l) ("pc" . ?p)))

If at least one tag has a selection key then pressing C-c C-c automatically presents you
with a special interface, listing inherited tags, the tags of the current headline, and a list of
all valid tags with corresponding keys3.

Pressing keys assigned to tags adds or removes them from the list of tags in the current
line. Selecting a tag in a group of mutually exclusive tags turns off any other tag from that
group.

In this interface, you can also use the following special keys:

TAB Enter a tag in the minibuffer, even if the tag is not in the predefined list.
You can complete on all tags present in the buffer and globally pre-defined
tags from org-tag-alist and org-tag-persistent-alist. You can also add
several tags: just separate them with a comma.

SPC Clear all tags for this line.

RET Accept the modified set.

C-g Abort without installing changes.

q If q is not assigned to a tag, it aborts like C-g.

! Turn off groups of mutually exclusive tags. Use this to (as an exception) assign
several tags from such a group.

C-c Toggle auto-exit after the next change (see below). If you are using expert
mode, the first C-c displays the selection window.

This method lets you assign tags to a headline with very few keys. With the above
setup, you could clear the current tags and set ‘@home’, ‘laptop’ and ‘pc’ tags with just the
following keys: C-c C-c SPC h l p RET. Switching from ‘@home’ to ‘@work’ would be done
with C-c C-c w RET or alternatively with C-c C-c C-c w. Adding the non-predefined tag
‘sarah’ could be done with C-c C-c TAB s a r a h RET.

If you find that most of the time you need only a single key press to modify your list of
tags, set the variable org-fast-tag-selection-single-key. Then you no longer have to
press RET to exit fast tag selection—it exits after the first change. If you then occasionally
need more keys, press C-c to turn off auto-exit for the current tag selection process (in
effect: start selection with C-c C-c C-c instead of C-c C-c). If you set the variable to the
value expert, the special window is not even shown for single-key tag selection, it comes
up only when you press an extra C-c.

3 Keys are automatically assigned to tags that have no configured keys.

Chapter 6: Tags 66

The number of tags displayed in the fast tag selection interface is limited by org-fast-

tag-selection-maximum-tags to avoid running out of keyboard keys. You can customize
this variable.

6.3 Tag Hierarchy

Tags can be defined in hierarchies. A tag can be defined as a group tag for a set of other
tags. The group tag can be seen as the “broader term” for its set of tags. Defining multiple
group tags and nesting them creates a tag hierarchy.

One use-case is to create a taxonomy of terms (tags) that can be used to classify nodes
in a document or set of documents.

When you search for a group tag, it returns matches for all members in the group and
its subgroups. In an agenda view, filtering by a group tag displays or hide headlines tagged
with at least one of the members of the group or any of its subgroups. This makes tag
searches and filters even more flexible.

You can set group tags by using brackets and inserting a colon between the group tag
and its related tags—beware that all whitespaces are mandatory so that Org can parse this
line correctly:

#+TAGS: [GTD : Control Persp]

In this example, ‘GTD’ is the group tag, and it is related to two other tags: ‘Control’,
‘Persp’. Defining ‘Control’ and ‘Persp’ as group tags creates a hierarchy of tags:

#+TAGS: [Control : Context Task]

#+TAGS: [Persp : Vision Goal AOF Project]

That can conceptually be seen as a hierarchy of tags:

• ‘GTD’

• ‘Persp’

• ‘Vision’

• ‘Goal’

• ‘AOF’

• ‘Project’

• ‘Control’

• ‘Context’

• ‘Task’

You can use the :startgrouptag, :grouptags and :endgrouptag keyword directly
when setting org-tag-alist directly:

(setq org-tag-alist '((:startgrouptag)

("GTD")

(:grouptags)

("Control")

("Persp")

(:endgrouptag)

(:startgrouptag)

("Control")

Chapter 6: Tags 67

(:grouptags)

("Context")

("Task")

(:endgrouptag)))

The tags in a group can be mutually exclusive if using the same group syntax as is used
for grouping mutually exclusive tags together; using curly brackets.

#+TAGS: { Context : @Home @Work @Call }

When setting org-tag-alist you can use :startgroup and :endgroup instead of
:startgrouptag and :endgrouptag to make the tags mutually exclusive.

Furthermore, the members of a group tag can also be regular expressions, creating
the possibility of a more dynamic and rule-based tag structure (see Section 17.9 [Regular
Expressions], page 265). The regular expressions in the group must be specified within curly
brackets. Here is an expanded example:

#+TAGS: [Vision : {V@.+}]

#+TAGS: [Goal : {G@.+}]

#+TAGS: [AOF : {AOF@.+}]

#+TAGS: [Project : {P@.+}]

Searching for the tag ‘Project’ now lists all tags also including regular expression
matches for ‘P@.+’, and similarly for tag searches on ‘Vision’, ‘Goal’ and ‘AOF’. For ex-
ample, this would work well for a project tagged with a common project-identifier, e.g.,
‘P@2014_OrgTags’.

If you want to ignore group tags temporarily, toggle group tags support with
org-toggle-tags-groups, bound to C-c C-x q. If you want to disable tag groups
completely, set org-group-tags to nil.

6.4 Tag Searches

Once a system of tags has been set up, it can be used to collect related information into
special lists.

C-c / m or C-c \ (org-match-sparse-tree)
Create a sparse tree with all headlines matching a tags search. With a C-u

prefix argument, ignore headlines that are not a TODO line.

M-x org-agenda m (org-tags-view)
Create a global list of tag matches from all agenda files. See Section 11.3.3
[Matching tags and properties], page 118.

M-x org-agenda M (org-tags-view)
Create a global list of tag matches from all agenda files, but check only TODO
items.

These commands all prompt for a match string which allows basic Boolean logic
like ‘+boss+urgent-project1’, to find entries with tags ‘boss’ and ‘urgent’, but not
‘project1’, or ‘Kathy|Sally’ to find entries which are tagged, like ‘Kathy’ or ‘Sally’.
The full syntax of the search string is rich and allows also matching against TODO
keywords, entry levels and properties. For a complete description with many examples, see
Section 11.3.3 [Matching tags and properties], page 118.

Chapter 7: Properties and Columns 68

7 Properties and Columns

A property is a key-value pair associated with an entry. Properties can be set, so they are
associated with a single entry, with every entry in a tree, or with the whole buffer.

There are two main applications for properties in Org mode. First, properties are like
tags, but with a value. Imagine maintaining a file where you document bugs and plan
releases for a piece of software. Instead of using tags like ‘release_1’, ‘release_2’, you
can use a property, say ‘Release’, that in different subtrees has different values, such as ‘1.0’
or ‘2.0’. Second, you can use properties to implement (very basic) database capabilities in
an Org buffer. Imagine keeping track of your music CDs, where properties could be things
such as the album, artist, date of release, number of tracks, and so on.

Properties can be conveniently edited and viewed in column view (see Section 7.5 [Col-
umn View], page 72).

7.1 Property Syntax

Properties are key–value pairs. When they are associated with a single entry or with a tree
they need to be inserted into a special drawer (see Section 2.7 [Drawers], page 16) with the
name ‘PROPERTIES’, which has to be located right below a headline, and its planning line
(see Section 8.3 [Deadlines and Scheduling], page 83) when applicable. Each property is
specified on a single line, with the key—surrounded by colons—first, and the value after it.
Keys are case-insensitive. Here is an example:

* CD collection

** Classic

*** Goldberg Variations

:PROPERTIES:

:Title: Goldberg Variations

:Composer: J.S. Bach

:Artist: Glenn Gould

:Publisher: Deutsche Grammophon

:NDisks: 1

:END:

Depending on the value of org-use-property-inheritance, a property set this way is
associated either with a single entry, or with the subtree defined by the entry, see Section 7.4
[Property Inheritance], page 71.

You may define the allowed values for a particular property ‘Xyz’ by setting a property
‘Xyz_ALL’. This special property is inherited, so if you set it in a level 1 entry, it applies
to the entire tree. When allowed values are defined, setting the corresponding property
becomes easier and is less prone to typing errors. For the example with the CD collection,
we can pre-define publishers and the number of disks in a box like this:

* CD collection

:PROPERTIES:

:NDisks_ALL: 1 2 3 4

:Publisher_ALL: "Deutsche Grammophon" Philips EMI

:END:

Chapter 7: Properties and Columns 69

Properties can be inserted at the buffer level. That means they apply before the first
headline and can be inherited by all entries in a file. Property blocks defined before the
first headline must be at the top of the buffer with only comments above them.

Properties can also be defined using lines like:

#+PROPERTY: NDisks_ALL 1 2 3 4

If you want to add to the value of an existing property, append a ‘+’ to the property
name. The following results in the property ‘var’ having the value ‘foo=1 bar=2’.

#+PROPERTY: var foo=1

#+PROPERTY: var+ bar=2

It is also possible to add to the values of inherited properties. The following results in the
‘Genres’ property having the value ‘Classic Baroque’ under the ‘Goldberg Variations’
subtree.

* CD collection

** Classic

:PROPERTIES:

:Genres: Classic

:END:

*** Goldberg Variations

:PROPERTIES:

:Title: Goldberg Variations

:Composer: J.S. Bach

:Artist: Glenn Gould

:Publisher: Deutsche Grammophon

:NDisks: 1

:Genres+: Baroque

:END:

Note that a property can only have one entry per drawer.

Property values set with the global variable org-global-properties can be inherited
by all entries in all Org files.

The following commands help to work with properties:

M-TAB (pcomplete)
After an initial colon in a line, complete property keys. All keys used in the
current file are offered as possible completions.

C-c C-x p (org-set-property)
Set a property. This prompts for a property name and a value. If necessary,
the property drawer is created as well.

C-u M-x org-insert-drawer

Insert a property drawer into the current entry. The drawer is inserted early in
the entry, but after the lines with planning information like deadlines. If before
first headline the drawer is inserted at the top of the drawer after any potential
comments.

C-c C-c (org-property-action)
With point in a property drawer, this executes property commands.

Chapter 7: Properties and Columns 70

C-c C-c s (org-set-property)
Set a property in the current entry. Both the property and the value can be
inserted using completion.

S-RIGHT (org-property-next-allowed-value), S-LEFT
(org-property-previous-allowed-value)

Switch property at point to the next/previous allowed value.

C-c C-c d (org-delete-property)
Remove a property from the current entry.

C-c C-c D (org-delete-property-globally)
Globally remove a property, from all entries in the current file.

C-c C-c c (org-compute-property-at-point)
Compute the property at point, using the operator and scope from the nearest
column format definition.

7.2 Special Properties

Special properties provide an alternative access method to Org mode features, like the
TODO state or the priority of an entry, discussed in the previous chapters. This interface
exists so that you can include these states in a column view (see Section 7.5 [Column View],
page 72), or to use them in queries. The following property names are special and should
not be used as keys in the properties drawer:

‘ALLTAGS’ All tags, including inherited ones.
‘BLOCKED’ t if task is currently blocked by children or siblings.
‘CATEGORY’ The category of an entry.
‘CLOCKSUM’ The sum of CLOCK intervals in the subtree. org-clock-sum

must be run first to compute the values in the current buffer.
‘CLOCKSUM_T’ The sum of CLOCK intervals in the subtree for today.

org-clock-sum-today must be run first to compute the
values in the current buffer.

‘CLOSED’ When was this entry closed?
‘DEADLINE’ The deadline timestamp.
‘FILE’ The filename the entry is located in.
‘ITEM’ The headline of the entry.
‘PRIORITY’ The priority of the entry, a string with a single letter.
‘SCHEDULED’ The scheduling timestamp.
‘TAGS’ The tags defined directly in the headline.
‘TIMESTAMP’ The first active keyword-less timestamp in the entry.1

‘TIMESTAMP_IA’ The first inactive keyword-less timestamp in the entry.
‘TODO’ The TODO keyword of the entry.

1 For both ‘TIMESTAMP’ and ‘TIMESTAMP_IA’: the word “first” refers to the first occurrence in the entry,
not the earliest in time; the prefix ‘CLOCK:’ at the beginning of a clock entry is considered a keyword in
this context; and timestamps inside property drawers are ignored.

Chapter 7: Properties and Columns 71

7.3 Property Searches

To create sparse trees and special lists with selection based on properties, the same com-
mands are used as for tag searches (see Section 6.4 [Tag Searches], page 67).

C-c / m or C-c \ (org-match-sparse-tree)
Create a sparse tree with all matching entries. With a C-u prefix argument,
ignore headlines that are not a TODO line.

M-x org-agenda m (org-tags-view)
Create a global list of tag/property matches from all agenda files.

M-x org-agenda M (org-tags-view)
Create a global list of tag matches from all agenda files, but check only TODO
items.

The syntax for the search string is described in Section 11.3.3 [Matching tags and prop-
erties], page 118.

There is also a special command for creating sparse trees based on a single property:

C-c / p Create a sparse tree based on the value of a property. This first prompts for
the name of a property, and then for a value. A sparse tree is created with all
entries that define this property with the given value. If you enclose the value
in curly braces, it is interpreted as a regular expression and matched against
the property values (see Section 17.9 [Regular Expressions], page 265).

7.4 Property Inheritance

The outline structure of Org documents lends itself to an inheritance model of properties: if
the parent in a tree has a certain property, the children can inherit this property. Org mode
does not turn this on by default, because it can slow down property searches significantly
and is often not needed. However, if you find inheritance useful, you can turn it on by
setting the variable org-use-property-inheritance. It may be set to t to make all
properties inherited from the parent, to a list of properties that should be inherited, or to a
regular expression that matches inherited properties. If a property has the value nil, this
is interpreted as an explicit un-define of the property, so that inheritance search stops at
this value and returns nil.

Org mode has a few properties for which inheritance is hard-coded, at least for the
special applications for which they are used:

COLUMNS The ‘COLUMNS’ property defines the format of column view (see Section 7.5
[Column View], page 72). It is inherited in the sense that the level where a
‘COLUMNS’ property is defined is used as the starting point for a column view
table, independently of the location in the subtree from where columns view is
turned on.

CATEGORY For agenda view, a category set through a ‘CATEGORY’ property applies to the
entire subtree.

ARCHIVE For archiving, the ‘ARCHIVE’ property may define the archive location for the
entire subtree (see Section 9.2.1 [Moving subtrees], page 97).

Chapter 7: Properties and Columns 72

LOGGING The ‘LOGGING’ property may define logging settings for an entry or a subtree
(see Section 5.3.2 [Tracking TODO state changes], page 55).

7.5 Column View

A great way to view and edit properties in an outline tree is column view. In column view,
each heading is turned into a table row. Columns in this table provide access to properties
of the entries. Org mode implements columns by overlaying a tabular structure over the
headline of each item. While the headlines have been turned into a table row, you can
still change the visibility of the outline tree. For example, you get a compact table by
switching to “contents” view—S-TAB S-TAB, or simply c while column view is active—but
you can still open, read, and edit the entry below each headline. Or, you can switch to
column view after executing a sparse tree command and in this way get a table only for the
selected items. Column view also works in agenda buffers (see Chapter 11 [Agenda Views],
page 112) where queries have collected selected items, possibly from a number of files.

7.5.1 Defining columns

Setting up a column view first requires defining the columns. This is done by defining a
column format line.

7.5.1.1 Scope of column definitions

To specify a format that only applies to a specific tree, add a ‘COLUMNS’ property to the top
node of that tree, for example:

** Top node for columns view

:PROPERTIES:

:COLUMNS: %25ITEM %TAGS %PRIORITY %TODO

:END:

A ‘COLUMNS’ property within a property drawer before first headline will apply to the
entire file. As an addition to property drawers, keywords can also be defined for an entire
file using a line like:

#+COLUMNS: %25ITEM %TAGS %PRIORITY %TODO

If a ‘COLUMNS’ property is present in an entry, it defines columns for the entry itself,
and for the entire subtree below it. Since the column definition is part of the hierarchical
structure of the document, you can define columns on level 1 that are general enough for
all sublevels, and more specific columns further down, when you edit a deeper part of the
tree.

7.5.1.2 Column attributes

A column definition sets the attributes of a column. The general definition looks like this:

%[WIDTH]PROPERTY[(TITLE)][{SUMMARY-TYPE}]

Except for the percent sign and the property name, all items are optional. The individual
parts have the following meaning:

WIDTH An integer specifying the width of the column in characters. If omitted, the
width is determined automatically.

Chapter 7: Properties and Columns 73

PROPERTY
The property that should be edited in this column. Special properties repre-
senting metadata are allowed here as well (see Section 7.2 [Special Properties],
page 70).

TITLE The header text for the column. If omitted, the property name is used.

SUMMARY-TYPE
The summary type. If specified, the column values for parent nodes are com-
puted from the children2.

Supported summary types are:

‘+’ Sum numbers in this column.
‘+;%.1f’ Like ‘+’, but format result with ‘%.1f’.
‘$’ Currency, short for ‘+;%.2f’.
‘min’ Smallest number in column.
‘max’ Largest number.
‘mean’ Arithmetic mean of numbers.
‘X’ Checkbox status, ‘[X]’ if all children are ‘[X]’.
‘X/’ Checkbox status, ‘[n/m]’.
‘X%’ Checkbox status, ‘[n%]’.
‘:’ Sum times, HH:MM, plain numbers are minutes.
‘:min’ Smallest time value in column.
‘:max’ Largest time value.
‘:mean’ Arithmetic mean of time values.
‘@min’ Minimum age3 (in days/hours/mins/seconds).
‘@max’ Maximum age (in days/hours/mins/seconds).
‘@mean’ Arithmetic mean of ages (in days/hours/mins/seconds).
‘est+’ Add low-high estimates.

You can also define custom summary types by setting org-columns-summary-

types.

The ‘est+’ summary type requires further explanation. It is used for combining esti-
mates, expressed as low-high ranges. For example, instead of estimating a particular task
will take 5 days, you might estimate it as 5–6 days if you’re fairly confident you know how
much work is required, or 1–10 days if you do not really know what needs to be done. Both
ranges average at 5.5 days, but the first represents a more predictable delivery.

When combining a set of such estimates, simply adding the lows and highs produces
an unrealistically wide result. Instead, ‘est+’ adds the statistical mean and variance of
the subtasks, generating a final estimate from the sum. For example, suppose you had ten
tasks, each of which was estimated at 0.5 to 2 days of work. Straight addition produces an
estimate of 5 to 20 days, representing what to expect if everything goes either extremely
well or extremely poorly. In contrast, ‘est+’ estimates the full job more realistically, at
10–15 days.

2 If more than one summary type applies to the same property, the parent values are computed according
to the first of them.

3 An age can be defined as a duration, using units defined in org-duration-units, e.g., ‘3d 1h’. If any
value in the column is as such, the summary is also expressed as a duration.

Chapter 7: Properties and Columns 74

Here is an example for a complete columns definition, along with allowed values4.

:COLUMNS: %25ITEM %9Approved(Approved?){X} %Owner %11Status \

%10Time_Estimate{:} %CLOCKSUM %CLOCKSUM_T

:Owner_ALL: Tammy Mark Karl Lisa Don

:Status_ALL: "In progress" "Not started yet" "Finished" ""

:Approved_ALL: "[]" "[X]"

The first column, ‘%25ITEM’, means the first 25 characters of the item itself, i.e., of the
headline. You probably always should start the column definition with the ‘ITEM’ specifier.
The other specifiers create columns ‘Owner’ with a list of names as allowed values, for
‘Status’ with four different possible values, and for a checkbox field ‘Approved’. When no
width is given after the ‘%’ character, the column is exactly as wide as it needs to be in order
to fully display all values. The ‘Approved’ column does have a modified title (‘Approved?’,
with a question mark). Summaries are created for the ‘Time_Estimate’ column by adding
time duration expressions like HH:MM, and for the ‘Approved’ column, by providing an
‘[X]’ status if all children have been checked. The ‘CLOCKSUM’ and ‘CLOCKSUM_T’ columns
are special, they list the sums of CLOCK intervals in the subtree, either for all clocks or
just for today.

7.5.2 Using column view

Turning column view on or off

C-c C-x C-c (org-columns)
Turn on column view. If point is before the first headline in the file, column
view is turned on for the entire file, using the ‘#+COLUMNS’ definition. If point
is somewhere inside the outline, this command searches the hierarchy, up from
point, for a ‘COLUMNS’ property that defines a format. When one is found, the
column view table is established for the tree starting at the entry that contains
the ‘COLUMNS’ property. If no such property is found, the format is taken from
the ‘#+COLUMNS’ line or from the variable org-columns-default-format, and
column view is established for the current entry and its subtree.

r or g on a columns view line (org-columns-redo)
Recreate the column view, to include recent changes made in the buffer.

C-c C-c or q on a columns view line (org-columns-quit)
Exit column view.

Editing values

LEFT, RIGHT, UP, DOWN
Move through the column view from field to field.

1..9,0 Directly select the Nth allowed value, 0 selects the 10th value.

4 Please note that the ‘COLUMNS’ definition must be on a single line; it is wrapped here only because of
formatting constraints.

Chapter 7: Properties and Columns 75

n or S-RIGHT (org-columns-next-allowed-value)
p or S-LEFT (org-columns-previous-allowed-value)

Switch to the next/previous allowed value of the field. For this, you have to
have specified allowed values for a property.

e (org-columns-edit-value)
Edit the property at point. For the special properties, this invokes the same
interface that you normally use to change that property. For example, the tag
completion or fast selection interface pops up when editing a ‘TAGS’ property.

C-c C-c (org-columns-toggle-or-columns-quit)
When there is a checkbox at point, toggle it. Else exit column view.

v (org-columns-show-value)
View the full value of this property. This is useful if the width of the column is
smaller than that of the value.

a (org-columns-edit-allowed)
Edit the list of allowed values for this property. If the list is found in the
hierarchy, the modified values are stored there. If no list is found, the new
value is stored in the first entry that is part of the current column view.

Modifying column view on-the-fly

< (org-columns-narrow)
> (org-columns-widen)

Make the column narrower/wider by one character.

S-M-RIGHT (org-columns-new)
Insert a new column, to the left of the current column.

S-M-LEFT (org-columns-delete)
Delete the current column.

M-LEFT (org-columns-move-left)
Move the current column left.

M-RIGHT (org-columns-move-right)
Move the current column right.

M-UP (org-columns-move-row-up)
Move the current row up.

M-DOWN (org-columns-move-row-down)
Move the current row down.

7.5.3 Capturing column view

Since column view is just an overlay over a buffer, it cannot be exported or printed directly.
If you want to capture a column view, use a ‘columnview’ dynamic block (see Section A.7
[Dynamic Blocks], page 284). The frame of this block looks like this:

* The column view

#+BEGIN: columnview :hlines 1 :id "label"

Chapter 7: Properties and Columns 76

#+END:

This dynamic block has the following parameters:

‘:id’ This is the most important parameter. Column view is a feature that is often
localized to a certain (sub)tree, and the capture block might be at a different
location in the file. To identify the tree whose view to capture, you can use
four values:

‘local’ Use the tree in which the capture block is located.

‘global’ Make a global view, including all headings in the file.

‘file:FILENAME’
Run column view at the top of the FILENAME file.

‘LABEL’ Call column view in the tree that has an ‘ID’ property with the
value LABEL. You can use M-x org-id-copy to create a globally
unique ID for the current entry and copy it to the kill-ring.

‘:match’ When set to a string, use this as a tags/property match filter to select only a
subset of the headlines in the scope set by the :id parameter.

‘:hlines’ When t, insert an hline after every line. When a number N, insert an hline
before each headline with level <= N.

‘:vlines’ When non-nil, force column groups to get vertical lines.

‘:maxlevel’
When set to a number, do not capture entries below this level.

‘:skip-empty-rows’
When non-nil, skip rows where the only non-empty specifier of the column
view is ‘ITEM’.

‘:exclude-tags’
List of tags to exclude from column view table: entries with these tags will be
excluded from the column view.

‘:indent’ When non-nil, indent each ‘ITEM’ field according to its level.

‘:link’ When non-nil, link the ‘ITEM’ headlines in the table to their origins.

‘:format’ Specify a column attribute (see Section 7.5.1.2 [Column attributes], page 72)
for the dynamic block.

‘:formatter’
A function to format column view data and insert it into the buffer. See the
option org-columns-dblock-formatter.

The following commands insert or update the dynamic block:

org-columns-insert-dblock

Insert a dynamic block capturing a column view. Prompt for the scope or ID
of the view.

This command can be invoked by calling org-dynamic-block-insert-dblock

(C-c C-x x) and selecting “columnview” (see Section A.7 [Dynamic Blocks],
page 284).

Chapter 7: Properties and Columns 77

C-c C-c C-c C-x C-u (org-dblock-update)
Update dynamic block at point. Point needs to be on the ‘#+BEGIN’ line of the
dynamic block.

C-u C-c C-x C-u (org-update-all-dblocks)
Update all dynamic blocks (see Section A.7 [Dynamic Blocks], page 284). This
is useful if you have several clock table blocks, column-capturing blocks or other
dynamic blocks in a buffer.

You can add formulas to the column view table, and you may add plotting instructions
in front of the table—these survive an update of the block. If there is a ‘TBLFM’ keyword
after the table, the table is recalculated automatically after an update.

An alternative way to capture and process property values into a table is provided by Eric
Schulte’s ‘org-collector.el’, which is a package in ‘org-contrib’5. It provides a general
API to collect properties from entries in a certain scope, and arbitrary Lisp expressions to
process these values before inserting them into a table or a dynamic block.

5 Contributed packages are not part of Emacs, but are distributed with the main distribution of Org—visit
https://orgmode.org.

https://orgmode.org

Chapter 8: Dates and Times 78

8 Dates and Times

To assist project planning, TODO items can be labeled with a date and/or a time. The
specially formatted string carrying the date and time information is called a timestamp in
Org mode. This may be a little confusing because timestamp is often used as indicating
when something was created or last changed. However, in Org mode this term is used in a
much wider sense.

Timestamps can be used to plan appointments, schedule tasks, set deadlines, track time,
and more. The following sections describe the timestamp format and tooling that Org mode
provides for common use cases dealing with time and time intervals.

8.1 Timestamps

A timestamp is a specification of a date—possibly with a time or time range—in a spe-
cial format, either ‘<2003-09-16 Tue>’ or ‘<2003-09-16 Tue 09:39>’ or ‘<2003-09-16 Tue

12:00-12:30>’1. A timestamp can appear anywhere in the headline or body of an Org
tree entry. Its presence causes entries to be shown on specific dates in the agenda (see
Section 11.3.1 [Weekly/daily agenda], page 114). We distinguish:

Plain timestamp; Event; Appointment
A simple timestamp just assigns a date/time to an item. This is just like writing
down an appointment or event in a paper agenda. In the agenda display, the
headline of an entry associated with a plain timestamp is shown exactly on that
date. There can be multiple timestamps in an item.

* Meet Peter at the movies

<2006-11-01 Wed 19:15>

* Discussion on climate change

<2006-11-02 Thu 10:00-12:00>

* My days off

<2006-11-03 Fri>

<2006-11-06 Mon>

Timestamp with repeater interval
A timestamp may contain a repeater interval, indicating that it applies not only
on the given date, but again and again after a certain interval of N hours (h),
days (d), weeks (w), months (m), or years (y). The following shows up in the
agenda every Wednesday:

* Pick up Sam at school

<2007-05-16 Wed 12:30 +1w>

1 The Org date format is inspired by the standard ISO 8601 date/time format. To use an alternative
format, see Section 8.2.2 [Custom time format], page 82. The day name is optional when you type
the date yourself. However, any date inserted or modified by Org adds that day name, for reading
convenience.

Chapter 8: Dates and Times 79

Diary-style expression entries
For more complex date specifications, Org mode supports using the special
expression diary entries implemented in the Section “Special Diary Entries” in
emacs2. For example, with optional time:

* 22:00-23:00 The nerd meeting on every 2nd Thursday of the month

<%%(diary-float t 4 2) 22:00-23:00>

Time range
Time range is a timestamp having two time units connected by ‘-’

* Discussion on climate change

<2006-11-02 Thu 10:00-12:00>

Time/Date range
Two timestamps connected by ‘--’ denote a range. In the agenda, the headline
is shown on the first and last day of the range, and on any dates that are
displayed and fall in the range. The first example specifies just the dates of the
range while the second example specifies a time range for each date.

** Meeting in Amsterdam

<2004-08-23 Mon>--<2004-08-26 Thu>

** This weeks committee meetings

<2004-08-23 Mon 10:00-11:00>--<2004-08-26 Thu 10:00-11:00>

Inactive timestamp
Just like a plain timestamp, but with square brackets instead of angular ones.
These timestamps are inactive in the sense that they do not trigger an entry
to show up in the agenda.

* Gillian comes late for the fifth time

[2006-11-01 Wed]

8.2 Creating Timestamps

For Org mode to recognize timestamps, they need to be in the specific format. All commands
listed below produce timestamps in the correct format.

C-c . (org-timestamp)
Prompt for a date and insert a corresponding timestamp. When point is at an
existing timestamp in the buffer, the command is used to modify this timestamp
instead of inserting a new one. When this command is used twice in succession,
a time range is inserted.

When called with a prefix argument, use the alternative format which contains
date and time. The default time can be rounded to multiples of 5 minutes. See
the option org-timestamp-rounding-minutes.

2 When working with the standard diary expression functions, you need to be very careful with the order
of the arguments. That order depends evilly on the variable calendar-date-style. For example, to
specify a date December 1, 2005, the call might look like ‘(diary-date 12 1 2005)’ or ‘(diary-date
1 12 2005)’ or ‘(diary-date 2005 12 1)’, depending on the settings. This has been the source of
much confusion. Org mode users can resort to special versions of these functions, namely org-date,
org-anniversary, org-cyclic, and org-block. These work just like the corresponding diary- func-
tions, but with stable ISO order of arguments (year, month, day) wherever applicable, independent of
the value of calendar-date-style.

Chapter 8: Dates and Times 80

With two prefix arguments, insert an active timestamp with the current time
without prompting.

C-c ! (org-timestamp-inactive)
Like C-c ., but insert an inactive timestamp that does not cause an agenda
entry.

C-c C-c Normalize timestamp, insert or fix day name if missing or wrong.

C-c < (org-date-from-calendar)
Insert a timestamp corresponding to point date in the calendar.

C-c > (org-goto-calendar)
Access the Emacs calendar for the current date. If there is a timestamp in the
current line, go to the corresponding date instead.

C-c C-o (org-open-at-point)
Access the agenda for the date given by the timestamp or -range at point (see
Section 11.3.1 [Weekly/daily agenda], page 114).

S-LEFT (org-timestamp-down-day), S-RIGHT (org-timestamp-up-day)
Change date at point by one day. These key bindings conflict with shift-selection
and related modes (see Section 17.14.2 [Conflicts], page 268).

S-UP (org-timestamp-up), S-DOWN (org-timestamp-down)
On the beginning or enclosing bracket of a timestamp, change its type. Within
a timestamp, change the item under point. Point can be on a year, month, day,
hour or minute. When the timestamp contains a time range like ‘15:30-16:30’,
modifying the first time also shifts the second, shifting the time block with
constant length. To change the length, modify the second time. Note that
if point is in a headline and not at a timestamp, these same keys modify the
priority of an item (see Section 5.4 [Priorities], page 58). The key bindings also
conflict with shift-selection and related modes (see Section 17.14.2 [Conflicts],
page 268).

C-c C-y (org-evaluate-time-range)
Evaluate a time range by computing the difference between start and end.
With a prefix argument, insert result after the time range (in a table: into the
following column).

8.2.1 The date/time prompt

When Org mode prompts for a date/time, the default is shown in default date/time format,
and the prompt therefore seems to ask for a specific format. But it in fact accepts date/time
information in a variety of formats. Generally, the information should start at the beginning
of the string. Org mode finds whatever information is in there and derives anything you
have not specified from the default date and time. The default is usually the current date
and time, but when modifying an existing timestamp, or when entering the second stamp
of a range, it is taken from the stamp in the buffer. When filling in information, Org mode
assumes that most of the time you want to enter a date in the future: if you omit the
month/year and the given day/month is before today, it assumes that you mean a future

Chapter 8: Dates and Times 81

date3. If the date has been automatically shifted into the future, the time prompt shows
this with ‘(=>F)’.

For example, let’s assume that today is June 13, 2006. Here is how various inputs are
interpreted, the items filled in by Org mode are in bold.

‘3-2-5’ ⇒ 2003-02-05
‘2/5/3’ ⇒ 2003-02-05
‘14’ ⇒ 2006-06-14
‘12’ ⇒ 2006-07-12
‘2/5’ ⇒ 2007-02-05
‘Fri’ ⇒ nearest Friday (default date or later)
‘sep 15’ ⇒ 2006-09-15
‘feb 15’ ⇒ 2007-02-15
‘sep 12 9’ ⇒ 2009-09-12
‘12:45’ ⇒ 2006-06-13 12:45
‘22 sept 0:34’ ⇒ 2006-09-22 0:34
‘w4’ ⇒ ISO week for of the current year 2006
‘2012 w4 fri’ ⇒ Friday of ISO week 4 in 2012
‘2012-w04-5’ ⇒ Same as above

Furthermore, you can specify a relative date by giving, as the first thing in the input:
a plus/minus sign, a number and a letter—‘h’, ‘d’, ‘w’, ‘m’ or ‘y’—to indicate a change in
hours, days, weeks, months, or years. With ‘h’ the date is relative to the current time, with
the other letters and a single plus or minus, the date is relative to today at 00:00. With a
double plus or minus, it is relative to the default date. If instead of a single letter, you use
the abbreviation of day name, the date is the Nth such day, e.g.:

‘+0’ ⇒ today
‘.’ ⇒ today
‘+2h’ ⇒ two hours from now
‘+4d’ ⇒ four days from today
‘+4’ ⇒ same as +4d
‘+2w’ ⇒ two weeks from today
‘++5’ ⇒ five days from default date
‘+2tue’ ⇒ second Tuesday from now

The function understands English month and weekday abbreviations. If you want to use
unabbreviated names and/or other languages, configure the variables parse-time-months
and parse-time-weekdays.

Not all dates can be represented in a given Emacs implementation. By default, Org
mode forces dates into the compatibility range 1970–2037 which works on all Emacs imple-
mentations. If you want to use dates outside this range, read the docstring of the variable
org-read-date-force-compatible-dates.

You can specify a time range by giving start and end times or by giving a start time
and a duration (in HH:MM format). Use one or two dash(es) as the separator in the former
case and use ‘+’ as the separator in the latter case, e.g.:

‘11am-1:15pm’ ⇒ 11:00-13:15

3 See the variable org-read-date-prefer-future. You may set that variable to the symbol time to even
make a time before now shift the date to tomorrow.

Chapter 8: Dates and Times 82

‘11h-13h15’ ⇒ same as above
‘11am--1:15pm’ ⇒ same as above
‘11am+2:15’ ⇒ same as above

Parallel to the minibuffer prompt, a calendar is popped up4. When you exit the date
prompt, either by clicking on a date in the calendar, or by pressing RET, the date selected
in the calendar is combined with the information entered at the prompt. You can control
the calendar fully from the minibuffer:

RET Choose date at point in calendar.
mouse-1 Select date by clicking on it.
S-RIGHT One day forward.
S-LEFT One day backward.
S-DOWN One week forward.
S-UP One week backward.
M-S-RIGHT One month forward.
M-S-LEFT One month backward.
> Scroll calendar forward by one month.
< Scroll calendar backward by one month.
M-v Scroll calendar forward by 3 months.
C-v Scroll calendar backward by 3 months.
C-. Select today’s date5

The actions of the date/time prompt may seem complex, but I assure you they will grow
on you, and you will start getting annoyed by pretty much any other way of entering a
date/time out there. To help you understand what is going on, the current interpretation
of your input is displayed live in the minibuffer6.

8.2.2 Custom time format

Org mode uses the standard ISO notation for dates and times as it is defined in ISO 8601.
If you cannot get used to this and require another representation of date and time to keep
you happy, you can get it by customizing the variables org-display-custom-times and
org-timestamp-custom-formats.

C-c C-x C-t (org-toggle-timestamp-overlays)
Toggle the display of custom formats for dates and times.

Org mode needs the default format for scanning, so the custom date/time format does not
replace the default format. Instead, it is put over the default format using text properties.
This has the following consequences:

• You cannot place point onto a timestamp anymore, only before or after.

• The S-UP and S-DOWN keys can no longer be used to adjust each component of a
timestamp. If point is at the beginning of the stamp, S-UP and S-DOWN change the
stamp by one day, just like S-LEFT S-RIGHT. At the end of the stamp, change the time
by one minute.

4 If you do not need/want the calendar, configure the variable org-popup-calendar-for-date-prompt.
5 You can also use the calendar command . to jump to today’s date, but if you are inserting an hour

specification for your timestamp, . will then insert a dot after the hour. By contrast, C-. will always
jump to today’s date.

6 If you find this distracting, turn off the display with org-read-date-display-live.

Chapter 8: Dates and Times 83

• If the timestamp contains a range of clock times or a repeater, these are not overlaid,
but remain in the buffer as they were.

• When you delete a timestamp character-by-character, it only disappears from the buffer
after all (invisible) characters belonging to the ISO timestamp have been removed.

• If the custom timestamp format is longer than the default, and you are using dates in
tables, table alignment will be messed up. If the custom format is shorter, things do
work as expected.

8.3 Deadlines and Scheduling

A timestamp may be preceded by special keywords to facilitate planning. Both the time-
stamp and the keyword have to be positioned immediately after the task they refer to.

‘DEADLINE’
Meaning: the task—most likely a TODO item, though not necessarily—is sup-
posed to be finished on that date.

On the deadline date, the task is listed in the agenda. In addition, the agenda
for today carries a warning about the approaching or missed deadline, starting
org-deadline-warning-days before the due date, and continuing until the
entry is marked as done. An example:

*** TODO write article about the Earth for the Guide

DEADLINE: <2004-02-29 Sun>

The editor in charge is [[bbdb:Ford Prefect]]

You can specify a different lead time for warnings for a specific deadlines us-
ing the following syntax. Here is an example with a warning period of 5
days ‘DEADLINE: <2004-02-29 Sun -5d>’. This warning is deactivated if the
task gets scheduled, and you set org-agenda-skip-deadline-prewarning-

if-scheduled to t.

‘SCHEDULED’
Meaning: you are planning to start working on that task on the given date.

The headline is listed under the given date7. In addition, a reminder that the
scheduled date has passed is present in the compilation for today, until the entry
is marked as done, i.e., the task is automatically forwarded until completed.

*** TODO Call Trillian for a date on New Years Eve.

SCHEDULED: <2004-12-25 Sat>

If you want to delay the display of this task in the agenda, use ‘SCHEDULED:
<2004-12-25 Sat -2d>’: the task is still scheduled on the 25th but will appear
two days later. In case the task contains a repeater, the delay is considered to
affect all occurrences; if you want the delay to only affect the first scheduled
occurrence of the task, use ‘--2d’ instead. See org-scheduled-delay-days

and org-agenda-skip-scheduled-delay-if-deadline for details on how to
control this globally or per agenda.

7 It will still be listed on that date after it has been marked as done. If you do not like this, set the variable
org-agenda-skip-scheduled-if-done.

Chapter 8: Dates and Times 84

Important: Scheduling an item in Org mode should not be under-
stood in the same way that we understand scheduling a meeting.
Setting a date for a meeting is just a simple appointment, you
should mark this entry with a simple plain timestamp, to get this
item shown on the date where it applies. This is a frequent misun-
derstanding by Org users. In Org mode, scheduling means setting
a date when you want to start working on an action item.

You may use timestamps with repeaters in scheduling and deadline entries. Org mode
issues early and late warnings based on the assumption that the timestamp represents the
nearest instance of the repeater. However, the use of diary expression entries like

<%%(diary-float t 42)>

in scheduling and deadline timestamps is limited. Org mode does not know enough about
the internals of each function to issue early and late warnings. However, it shows the item
on each day when the expression entry matches.

8.3.1 Inserting deadlines or schedules

The following commands allow you to quickly insert a deadline or to schedule an item:8

C-c C-d (org-deadline)
Insert ‘DEADLINE’ keyword along with a stamp. The insertion happens in the
line directly following the headline. Remove any ‘CLOSED’ timestamp. When
called with a prefix argument, also remove any existing deadline from the entry.
Depending on the variable org-log-redeadline, take a note when changing
an existing deadline9.

C-c C-s (org-schedule)
Insert ‘SCHEDULED’ keyword along with a stamp. The insertion happens in the
line directly following the headline. Remove any ‘CLOSED’ timestamp. When
called with a prefix argument, also remove the scheduling date from the entry.
Depending on the variable org-log-reschedule, take a note when changing
an existing scheduling time10.

C-c / d (org-check-deadlines)
Create a sparse tree with all deadlines that are either past-due, or which will
become due within org-deadline-warning-days. With C-u prefix, show all
deadlines in the file. With a numeric prefix, check that many days. For example,
C-1 C-c / d shows all deadlines due tomorrow.

C-c / b (org-check-before-date)
Sparse tree for deadlines and scheduled items before a given date.

C-c / a (org-check-after-date)
Sparse tree for deadlines and scheduled items after a given date.

8 The ‘SCHEDULED’ and ‘DEADLINE’ dates are inserted on the line right below the headline. Do not put any
text between this line and the headline.

9 Note the corresponding ‘STARTUP’ options ‘logredeadline’, ‘lognoteredeadline’, and
‘nologredeadline’.

10 Note the corresponding ‘STARTUP’ options ‘logreschedule’, ‘lognotereschedule’, and
‘nologreschedule’.

Chapter 8: Dates and Times 85

Note that org-schedule and org-deadline supports setting the date by indicating a
relative time e.g., ‘+1d’ sets the date to the next day after today, and ‘--1w’ sets the date
to the previous week before any current timestamp.

8.3.2 Repeated tasks

Some tasks need to be repeated again and again. Org mode helps to organize such tasks
using a so-called repeater in a ‘DEADLINE’, ‘SCHEDULED’, or plain timestamps11. In the
following example:

** TODO Pay the rent

DEADLINE: <2005-10-01 Sat +1m>

the ‘+1m’ is a repeater; the intended interpretation is that the task has a deadline on
‘<2005-10-01>’ and repeats itself every (one) month starting from that time. You can use
yearly, monthly, weekly, daily and hourly repeat cookies by using the ‘y’, ‘m’, ‘w’, ‘d’ and ‘h’
letters. If you need both a repeater and a special warning period in a deadline entry, the
repeater should come first and the warning period last

DEADLINE: <2005-10-01 Sat +1m -3d>

Deadlines and scheduled items produce entries in the agenda when they are over-due, so
it is important to be able to mark such an entry as done once you have done so. When you
mark a ‘DEADLINE’ or a ‘SCHEDULED’ with the TODO keyword ‘DONE’, it no longer produces
entries in the agenda. The problem with this is, however, is that then also the next instance
of the repeated entry will not be active. Org mode deals with this in the following way:
when you try to mark such an entry as done, using C-c C-t, it shifts the base date of the
repeating timestamp by the repeater interval, and immediately sets the entry state back to
TODO12. In the example above, setting the state to ‘DONE’ would actually switch the date
like this:

** TODO Pay the rent

DEADLINE: <2005-11-01 Tue +1m>

When task contains multiple timestamps with repeater interval, all these timestamps
are shifted.

To mark a task with a repeater as DONE, use C-- 1 C-c C-t, i.e., org-todo with a
numeric prefix argument of ‘-1’.

A timestamp13 is added under the deadline, to keep a record that you actually acted on
the previous instance of this deadline.

As a consequence of shifting the base date, this entry is no longer visible in the agenda
when checking past dates, but all future instances will be visible.

With the ‘+1m’ cookie, the date shift is always exactly one month. So if you have not paid
the rent for three months, marking this entry DONE still keeps it as an overdue deadline.
Depending on the task, this may not be the best way to handle it. For example, if you

11 Org does not repeat inactive timestamps, however. See Section 8.1 [Timestamps], page 78.
12 In fact, the target state is taken from, in this sequence, the ‘REPEAT_TO_STATE’ property, the variable

org-todo-repeat-to-state if it is a string, the previous TODO state if org-todo-repeat-to-state is
t, or the first state of the TODO state sequence.

13 You can change this using the option org-log-repeat, or the ‘STARTUP’ options ‘logrepeat’,
‘lognoterepeat’, and ‘nologrepeat’. With ‘lognoterepeat’, you will also be prompted for a note.

Chapter 8: Dates and Times 86

forgot to call your father for 3 weeks, it does not make sense to call him 3 times in a single
day to make up for it. Finally, there are tasks, like changing batteries, which should always
repeat a certain time after the last time you did it. For these tasks, Org mode has special
repeaters ‘++’ and ‘.+’. For example:

** TODO Call Father

DEADLINE: <2008-02-10 Sun ++1w>

Marking this DONE shifts the date by at least one week, but also

by as many weeks as it takes to get this date into the future.

However, it stays on a Sunday, even if you called and marked it

done on Saturday.

** TODO Empty kitchen trash

DEADLINE: <2008-02-08 Fri 20:00 ++1d>

Marking this DONE shifts the date by at least one day, and also

by as many days as it takes to get the timestamp into the future.

Since there is a time in the timestamp, the next deadline in the

future will be on today's date if you complete the task before

20:00.

** TODO Check the batteries in the smoke detectors

DEADLINE: <2005-11-01 Tue .+1m>

Marking this DONE shifts the date to one month after today.

** TODO Wash my hands

DEADLINE: <2019-04-05 08:00 Fri .+1h>

Marking this DONE shifts the date to exactly one hour from now.

You may have both scheduling and deadline information for a specific task. If the
repeater is set for the scheduling information only, you probably want the repeater to be
ignored after the deadline. If so, set the variable org-agenda-skip-scheduled-repeats-

after-deadline to t. However, any scheduling information without a repeater is no longer
relevant once the task is done, and thus, removed upon repeating the task. If you want
both scheduling and deadline information to repeat after the same interval, set the same
repeater for both timestamps.

An alternative to using a repeater is to create a number of copies of a task subtree,
with dates shifted in each copy. The command C-c C-x c was created for this purpose; it
is described in Section 2.4 [Structure Editing], page 10.

8.4 Clocking Work Time

Org mode allows you to clock the time you spend on specific tasks in a project. When you
start working on an item, you can start the clock. When you stop working on that task,
or when you mark the task done, the clock is stopped and the corresponding time interval
is recorded. It also computes the total time spent on each subtree14 of a project. And

14 Clocking only works if all headings are indented with less than 30 stars. This is a hard-coded limitation
of lmax in org-clock-sum.

Chapter 8: Dates and Times 87

it remembers a history or tasks recently clocked, so that you can jump quickly between a
number of tasks absorbing your time.

To save the clock history across Emacs sessions, use:

(setq org-clock-persist 'history)

(org-clock-persistence-insinuate)

When you clock into a new task after resuming Emacs, the incomplete clock15 is retrieved
(see [Resolving idle time (1)], page 92) and you are prompted about what to do with it.

8.4.1 Clocking commands

C-c C-x C-i (org-clock-in)
Start the clock on the current item (clock-in). This inserts the ‘CLOCK’ keyword
together with a timestamp. If this is not the first clocking of this item, the
multiple ‘CLOCK’ lines are wrapped into a ‘LOGBOOK’ drawer (see also the variable
org-clock-into-drawer). You can also overrule the setting of this variable for
a subtree by setting a ‘CLOCK_INTO_DRAWER’ or ‘LOG_INTO_DRAWER’ property.
When called with a C-u prefix argument, select the task from a list of recently
clocked tasks. With two C-u C-u prefixes, clock into the task at point and mark
it as the default task; the default task is always be available with letter d when
selecting a clocking task. With three C-u C-u C-u prefixes, force continuous
clocking by starting the clock when the last clock stopped.

While the clock is running, Org shows the current clocking time in the mode
line, along with the title of the task. The clock time shown is all time ever
clocked for this task and its children. If the task has an effort estimate (see
Section 8.5 [Effort Estimates], page 93), the mode line displays the current
clocking time against it16. If the task is a repeating one (see Section 8.3.2
[Repeated tasks], page 85), show only the time since the last reset of the task17.
You can exercise more control over show time with the ‘CLOCK_MODELINE_TOTAL’
property. It may have the values ‘current’ to show only the current clocking
instance, ‘today’ to show all time clocked on this task today—see also the
variable org-extend-today-until, all to include all time, or auto which is
the default18. Clicking with mouse-1 onto the mode line entry pops up a menu
with clocking options.

C-c C-x C-o (org-clock-out)
Stop the clock (clock-out). This inserts another timestamp at the same location
where the clock was last started. It also directly computes the resulting time
in inserts it after the time range as ‘=>HH:MM’. See the variable org-log-note-
clock-out for the possibility to record an additional note together with the
clock-out timestamp19.

15 To resume the clock under the assumption that you have worked on this task while outside Emacs, use
‘(setq org-clock-persist t)’.

16 To add an effort estimate “on the fly”, hook a function doing this to org-clock-in-prepare-hook.
17 The last reset of the task is recorded by the ‘LAST_REPEAT’ property.
18 See also the variable org-clock-mode-line-total.
19 The corresponding in-buffer setting is: ‘#+STARTUP: lognoteclock-out’.

Chapter 8: Dates and Times 88

C-c C-x C-x (org-clock-in-last)
Re-clock the last clocked task. With one C-u prefix argument, select the task
from the clock history. With two C-u prefixes, force continuous clocking by
starting the clock when the last clock stopped.

C-c C-x C-e (org-clock-modify-effort-estimate)
Update the effort estimate for the current clock task.

C-c C-c or C-c C-y (org-evaluate-time-range)
Recompute the time interval after changing one of the timestamps. This is
only necessary if you edit the timestamps directly. If you change them with
S-<cursor> keys, the update is automatic.

C-S-UP (org-clock-timestamps-up), C-S-DOWN (org-clock-timestamps-down)
On CLOCK log lines, increase/decrease both timestamps so that the clock
duration keeps the same value.

S-M-UP (org-timestamp-up), S-M-DOWN (org-timestamp-down)
On ‘CLOCK’ log lines, increase/decrease the timestamp at point and the one of
the previous, or the next, clock timestamp by the same duration. For example,
if you hit S-M-UP to increase a clocked-out timestamp by five minutes, then the
clocked-in timestamp of the next clock is increased by five minutes.

Only ‘CLOCK’ logs created during current Emacs session are considered when
adjusting next/previous timestamp.

C-c C-t (org-todo)
Changing the TODO state of an item to DONE automatically stops the clock
if it is running in this same item.

C-c C-x C-q (org-clock-cancel)
Cancel the current clock. This is useful if a clock was started by mistake, or if
you ended up working on something else.

C-c C-x C-j (org-clock-goto)
Jump to the headline of the currently clocked in task. With a C-u prefix
argument, select the target task from a list of recently clocked tasks.

C-c C-x C-d (org-clock-display)
Display time summaries for each subtree in the current buffer. This puts over-
lays at the end of each headline, showing the total time recorded under that
heading, including the time of any subheadings. You can use visibility cycling
to study the tree, but the overlays disappear when you change the buffer (see
variable org-remove-highlights-with-change) or press C-c C-c.

The l key may be used in the agenda (see Section 11.3.1 [Weekly/daily agenda], page 114)
to show which tasks have been worked on or closed during a day.

Important: note that both org-clock-out and org-clock-in-last can have a global
key binding and do not modify the window disposition.

8.4.2 The clock table

Org mode can produce quite complex reports based on the time clocking information. Such
a report is called a clock table, because it is formatted as one or several Org tables.

Chapter 8: Dates and Times 89

org-clock-report

Insert or update a clock table. When called with a prefix argument, jump to
the first clock table in the current document and update it. The clock table
includes archived trees.

This command can be invoked by calling org-dynamic-block-insert-dblock

(C-c C-x x) and selecting “clocktable” (see Section A.7 [Dynamic Blocks],
page 284).

C-c C-c or C-c C-x C-u (org-dblock-update)
Update dynamic block at point. Point needs to be in the ‘BEGIN’ line of the
dynamic block.

C-u C-c C-x C-u

Update all dynamic blocks (see Section A.7 [Dynamic Blocks], page 284). This
is useful if you have several clock table blocks in a buffer.

S-LEFT, S-RIGHT (org-clocktable-try-shift)
Shift the current ‘:block’ interval and update the table. Point needs to be in
the ‘#+BEGIN: clocktable’ line for this command. If ‘:block’ is ‘today’, it is
shifted to ‘today-1’, etc.

Here is an example of the frame for a clock table as it is inserted into the buffer by
org-clock-report:

#+BEGIN: clocktable :maxlevel 2 :emphasize nil :scope file

#+END:

The ‘#+BEGIN’ line contains options to define the scope, structure, and formatting of the
report. Defaults for all these options can be configured in the variable org-clocktable-

defaults.

First there are options that determine which clock entries are to be selected:

‘:maxlevel’
Maximum level depth to which times are listed in the table. Clocks at deeper
levels are summed into the upper level.

‘:scope’ The scope to consider. This can be any of the following:

‘nil’ the current buffer or narrowed region
‘file’ the full current buffer
‘subtree’ the subtree where the clocktable is located
‘treeN’ the surrounding level N tree, for example ‘tree3’
‘tree’ the surrounding level 1 tree
‘agenda’ all agenda files
‘("file" ...)’ scan these files
‘FUNCTION’ scan files returned by calling FUNCTION with no argument
‘file-with-archives’ current file and its archives
‘agenda-with-archives’ all agenda files, including archives

‘:block’ The time block to consider. This block is specified either absolutely, or relative
to the current time and may be any of these formats:

‘2007-12-31’ New year eve 2007

Chapter 8: Dates and Times 90

‘2007-12’ December 2007
‘2007-W50’ ISO-week 50 in 2007
‘2007-Q2’ 2nd quarter in 2007
‘2007’ the year 2007
‘today’, ‘yesterday’, ‘today-N’ a relative day
‘thisweek’, ‘lastweek’, ‘thisweek-N’ a relative week
‘thismonth’, ‘lastmonth’, ‘thismonth-N’ a relative month
‘thisyear’, ‘lastyear’, ‘thisyear-N’ a relative year
‘untilnow’20 all clocked time ever

When this option is not set, Org falls back to the value in org-clock-display-

default-range, which defaults to the current year.

Use S-LEFT or S-RIGHT to shift the time interval.

‘:tstart’ A time string specifying when to start considering times. Relative times like
‘"<-2w>"’ can also be used. See Section 11.3.3 [Matching tags and properties],
page 118 for relative time syntax.

‘:tend’ A time string specifying when to stop considering times. Relative times like
‘"<now>"’ can also be used. See Section 11.3.3 [Matching tags and properties],
page 118 for relative time syntax.

‘:wstart’ The starting day of the week. The default is 1 for Monday.

‘:mstart’ The starting day of the month. The default is 1 for the first.

‘:step’ Set to ‘day’, ‘week’, ‘semimonth’, ‘month’, ‘quarter’, or ‘year’ to split the table
into chunks. To use this, either ‘:block’, or ‘:tstart’ and ‘:tend’ are required.

‘:stepskip0’
When non-nil, do not show steps that have zero time.

‘:fileskip0’
When non-nil, do not show table sections from files which did not contribute.

‘:match’ A tags match to select entries that should contribute. See Section 11.3.3 [Match-
ing tags and properties], page 118 for the match syntax.

Then there are options that determine the formatting of the table. There options are
interpreted by the function org-clocktable-write-default, but you can specify your own
function using the ‘:formatter’ parameter.

‘:emphasize’
When non-nil, emphasize level one and level two items.

‘:lang’ Language21 to use for descriptive cells like “Task”.

‘:link’ Link the item headlines in the table to their origins.

‘:narrow’ An integer to limit the width of the headline column in the Org table. If you
write it like ‘50!’, then the headline is also shortened in export.

‘:indent’ Indent each headline field according to its level.

20 When using :step, untilnow starts from the beginning of 2003, not the beginning of time.
21 Language terms can be set through the variable org-clock-clocktable-language-setup.

Chapter 8: Dates and Times 91

‘:filetitle’
Show title in the file column if the file has a ‘#+title’.

‘:hidefiles’
Hide the file column when multiple files are used to produce the table.

‘:tcolumns’
Number of columns to be used for times. If this is smaller than ‘:maxlevel’,
lower levels are lumped into one column.

‘:level’ Should a level number column be included?

‘:sort’ A cons cell containing the column to sort and a sorting type. E.g., ‘:sort (1 .

?a)’ sorts the first column alphabetically.

‘:compact’
Abbreviation for ‘:level nil :indent t :narrow 40! :tcolumns 1’. All are
overwritten except if there is an explicit ‘:narrow’.

‘:timestamp’
A timestamp for the entry, when available. Look for ‘SCHEDULED’, ‘DEADLINE’,
‘TIMESTAMP’ and ‘TIMESTAMP_IA’ special properties (see Section 7.2 [Special
Properties], page 70), in this order.

‘:tags’ When this flag is non-nil, show the headline’s tags.

‘:properties’
List of properties shown in the table. Each property gets its own column.

‘:inherit-props’
When this flag is non-nil, the values for ‘:properties’ are inherited.

‘:formula’
Content of a ‘TBLFM’ keyword to be added and evaluated. As a special case,
‘:formula %’ adds a column with % time. If you do not specify a formula here,
any existing formula below the clock table survives updates and is evaluated.

‘:formatter’
A function to format clock data and insert it into the buffer.

To get a clock summary of the current level 1 tree, for the current day, you could write:

#+BEGIN: clocktable :maxlevel 2 :block today :scope tree1 :link t

#+END:

To use a specific time range you could write22

#+BEGIN: clocktable :tstart "<2006-08-10 Thu 10:00>"

:tend "<2006-08-10 Thu 12:00>"

#+END:

A range starting a week ago and ending right now could be written as

#+BEGIN: clocktable :tstart "<-1w>" :tend "<now>"

#+END:

A summary of the current subtree with % times would be

22 Note that all parameters must be specified in a single line—the line is broken here only to fit it into the
manual.

Chapter 8: Dates and Times 92

#+BEGIN: clocktable :scope subtree :link t :formula %

#+END:

A horizontally compact representation of everything clocked during last week would be

#+BEGIN: clocktable :scope agenda :block lastweek :compact t

#+END:

8.4.3 Resolving idle time and continuous clocking

Resolving idle time

If you clock in on a work item, and then walk away from your computer—perhaps to take
a phone call—you often need to “resolve” the time you were away by either subtracting it
from the current clock, or applying it to another one.

By customizing the variable org-clock-idle-time to some integer, such as 10 or 15,
Emacs can alert you when you get back to your computer after being idle for that many
minutes23, and ask what you want to do with the idle time. There will be a question waiting
for you when you get back, indicating how much idle time has passed constantly updated
with the current amount, as well as a set of choices to correct the discrepancy:

k To keep some or all of the minutes and stay clocked in, press k. Org asks how
many of the minutes to keep. Press RET to keep them all, effectively changing
nothing, or enter a number to keep that many minutes.

K If you use the shift key and press K, it keeps however many minutes you request
and then immediately clock out of that task. If you keep all the minutes, this
is the same as just clocking out of the current task.

s To keep none of the minutes, use s to subtract all the away time from the clock,
and then check back in from the moment you returned.

S To keep none of the minutes and just clock out at the start of the away time, use
the shift key and press S. Remember that using shift always leave you clocked
out, no matter which option you choose.

C To cancel the clock altogether, use C. Note that if instead of canceling you
subtract the away time, and the resulting clock amount is less than a minute,
the clock is still canceled rather than cluttering up the log with an empty entry.

What if you subtracted those away minutes from the current clock, and now want to
apply them to a new clock? Simply clock in to any task immediately after the subtraction.
Org will notice that you have subtracted time “on the books”, so to speak, and will ask if
you want to apply those minutes to the next task you clock in on.

There is one other instance when this clock resolution magic occurs. Say you were
clocked in and hacking away, and suddenly your cat chased a mouse who scared a hamster
that crashed into your UPS’s power button! You suddenly lose all your buffers, but thanks
to auto-save you still have your recent Org mode changes, including your last clock in.

23 On computers using macOS, idleness is based on actual user idleness, not just Emacs’s idle time. For
X11, you can install a utility program ‘x11idle.c’, available in the ‘org-contrib/’ repository, or install
the xprintidle package and set it to the variable org-clock-x11idle-program-name if you are running
Debian, to get the same general treatment of idleness. On other systems, idle time refers to Emacs idle
time only.

Chapter 8: Dates and Times 93

If you restart Emacs and clock into any task, Org will notice that you have a dangling
clock which was never clocked out from your last session. Using that clock’s starting time
as the beginning of the unaccounted-for period, Org will ask how you want to resolve that
time. The logic and behavior is identical to dealing with away time due to idleness; it is
just happening due to a recovery event rather than a set amount of idle time.

You can also check all the files visited by your Org agenda for dangling clocks at any
time using M-x org-resolve-clocks RET (or C-c C-x C-z).

Continuous clocking

You may want to start clocking from the time when you clocked out the previous task. To
enable this systematically, set org-clock-continuously to non-nil. Each time you clock
in, Org retrieves the clock-out time of the last clocked entry for this session, and start the
new clock from there.

If you only want this from time to time, use three universal prefix arguments with
org-clock-in and two C-u C-u with org-clock-in-last.

Clocking out automatically after some idle time

When you often forget to clock out before being idle, and you don’t want to manually set
the clocking time to take into account, you can set org-clock-auto-clockout-timer to
a number of seconds and add ‘(org-clock-auto-clockout-insinuate)’ to your ‘.emacs’
file.

When the clock is running and Emacs is idle for more than this number of seconds, the
clock will be clocked out automatically.

Use ‘M-x org-clock-toggle-auto-clockout RET’ to temporarily turn this on or off.

8.5 Effort Estimates

If you want to plan your work in a very detailed way, or if you need to produce offers with
quotations of the estimated work effort, you may want to assign effort estimates to entries.
If you are also clocking your work, you may later want to compare the planned effort with
the actual working time, a great way to improve planning estimates.

Effort estimates are stored in a special property ‘EFFORT’. Multiple formats are sup-
ported, such as ‘3:12’, ‘1:23:45’, or ‘1d3h5min’; see the file ‘org-duration.el’ for more
detailed information about the format.

You can set the effort for an entry with the following commands:

C-c C-x e (org-set-effort)
Set the effort estimate for the current entry. With a prefix argument, set it to
the next allowed value—see below. This command is also accessible from the
agenda with the e key.

C-c C-x C-e (org-clock-modify-effort-estimate)
Modify the effort estimate of the item currently being clocked.

Clearly the best way to work with effort estimates is through column view (see Section 7.5
[Column View], page 72). You should start by setting up discrete values for effort estimates,
and a ‘COLUMNS’ format that displays these values together with clock sums—if you want
to clock your time. For a specific buffer you can use:

Chapter 8: Dates and Times 94

#+PROPERTY: Effort_ALL 0 0:10 0:30 1:00 2:00 3:00 4:00 5:00 6:00 7:00

#+COLUMNS: %40ITEM(Task) %17Effort(Estimated Effort){:} %CLOCKSUM

or, even better, you can set up these values globally by customizing the variables
org-global-properties and org-columns-default-format. In particular if you want to
use this setup also in the agenda, a global setup may be advised.

The way to assign estimates to individual items is then to switch to column mode, and
to use S-RIGHT and S-LEFT to change the value. The values you enter are immediately
summed up in the hierarchy. In the column next to it, any clocked time is displayed.

If you switch to column view in the daily/weekly agenda, the effort column summarizes
the estimated work effort for each day24, and you can use this to find space in your schedule.
To get an overview of the entire part of the day that is committed, you can set the option
org-agenda-columns-add-appointments-to-effort-sum. The appointments on a day
that take place over a specified time interval are then also added to the load estimate of
the day.

Effort estimates can be used in secondary agenda filtering that is triggered with the /

key in the agenda (see Section 11.5 [Agenda Commands], page 126). If you have these
estimates defined consistently, two or three key presses narrow down the list to stuff that
fits into an available time slot.

8.6 Taking Notes with a Relative Timer

Org provides two types of timers. There is a relative timer that counts up, which can be
useful when taking notes during, for example, a meeting or a video viewing. There is also
a countdown timer.

The relative and countdown are started with separate commands.

C-c C-x 0 (org-timer-start)
Start or reset the relative timer. By default, the timer is set to 0. When called
with a C-u prefix, prompt the user for a starting offset. The prompt will default
to a timer string at point (if any), providing a convenient way to restart taking
notes after a break in the process. When called with a double prefix argument
C-u C-u, change all timer strings in the active region by a certain amount. This
can be used to fix timer strings if the timer was not started at exactly the right
moment.

C-c C-x ; (org-timer-set-timer)
Start a countdown timer. The user is prompted for a duration. org-timer-

default-timer sets the default countdown value. Giving a numeric prefix
argument overrides this default value. This command is available as ; in agenda
buffers.

Once started, relative and countdown timers are controlled with the same commands.

C-c C-x . (org-timer)
Insert a relative time into the buffer. The first time you use this, the timer
starts. Using a prefix argument restarts it.

24 Please note the pitfalls of summing hierarchical data in a flat list (see Section 11.8 [Agenda Column
View], page 139).

Chapter 8: Dates and Times 95

C-c C-x - (org-timer-item)
Insert a description list item with the current relative time. With a prefix
argument, first reset the timer to 0.

M-RET (org-insert-heading)
Once the timer list is started, you can also use M-RET to insert new timer items.

C-c C-x , (org-timer-pause-or-continue)
Pause the timer, or continue it if it is already paused.

C-c C-x _ (org-timer-stop)
Stop the timer. After this, you can only start a new timer, not continue the old
one. This command also removes the timer from the mode line.

Chapter 9: Refiling and Archiving 96

9 Refiling and Archiving

Once information is in the system, it may need to be moved around. Org provides Refile,
Copy and Archive commands for this. Refile and Copy helps with moving and copying
outlines. Archiving helps to keep the system compact and fast.

9.1 Refile and Copy

When reviewing the captured data, you may want to refile or to copy some of the entries
into a different list, for example into a project. Cutting, finding the right location, and then
pasting the note is cumbersome. To simplify this process, you can use the following special
command:

C-c C-w (org-refile)
Refile the entry or region at point. This command offers possible locations for
refiling the entry and lets you select one with completion. The item (or all
items in the region) is filed below the target heading as a sub-item. Depending
on org-reverse-note-order, it is either the first or last sub-item.

By default, all level 1 headlines in the current buffer are considered to be targets,
but you can have more complex definitions across a number of files. See the vari-
able org-refile-targets for details. If you would like to select a location via a
file-path-like completion along the outline path, see the variables org-refile-
use-outline-path and org-outline-path-complete-in-steps. If you would
like to be able to create new nodes as new parents for refiling on the fly, check
the variable org-refile-allow-creating-parent-nodes. When the variable
org-log-refile1 is set, a timestamp or a note is recorded whenever an entry
is refiled.

C-u C-c C-w

Use the refile interface to jump to a heading.

C-u C-u C-c C-w (org-refile-goto-last-stored)
Jump to the location where org-refile last moved a tree to.

C-2 C-c C-w

Refile as the child of the item currently being clocked.

C-3 C-c C-w

Refile and keep the entry in place. Also see org-refile-keep to make this the
default behavior, and beware that this may result in duplicated ‘ID’ properties.

C-0 C-c C-w or C-u C-u C-u C-c C-w (org-refile-cache-clear)
Clear the target cache. Caching of refile targets can be turned on by setting
org-refile-use-cache. To make the command see new possible targets, you
have to clear the cache with this command.

C-c M-w (org-refile-copy)
Copying works like refiling, except that the original note is not deleted.

1 Note the corresponding ‘STARTUP’ options ‘logrefile’, ‘lognoterefile’, and ‘nologrefile’.

Chapter 9: Refiling and Archiving 97

C-c C-M-w (org-refile-reverse)
Works like refiling, except that it temporarily toggles how the value of
org-reverse-note-order applies to the current buffer. So if org-refile

would append the entry as the last entry under the target header,
org-refile-reverse will prepend it as the first entry, and vice versa.

9.2 Archiving

When a project represented by a (sub)tree is finished, you may want to move the tree out
of the way and to stop it from contributing to the agenda. Archiving is important to keep
your working files compact and global searches like the construction of agenda views fast.

C-c C-x C-a (org-archive-subtree-default)
Archive the current entry using the command specified in the variable
org-archive-default-command.

9.2.1 Moving a tree to an archive file

The most common archiving action is to move a project tree to another file, the archive file.

C-c C-x C-s or short C-c $ (org-archive-subtree)
Archive the subtree starting at point position to the location given by
org-archive-location.

C-u C-c C-x C-s

Check if any direct children of the current headline could be moved to the
archive. To do this, check each subtree for open TODO entries. If none is
found, the command offers to move it to the archive location. If point is not on
a headline when this command is invoked, check level 1 trees.

C-u C-u C-c C-x C-s

As above, but check subtree for timestamps instead of TODO entries. The
command offers to archive the subtree if it does contain a timestamp, and that
timestamp is in the past.

The default archive location is a file in the same directory as the current file, with the
name derived by appending ‘_archive’ to the current file name. You can also choose what
heading to file archived items under, with the possibility to add them to a datetree in a
file. For information and examples on how to specify the file and the heading, see the
documentation string of the variable org-archive-location.

There is also an in-buffer option for setting this variable, for example:

#+ARCHIVE: %s_done::

If you would like to have a special archive location for a single entry or a (sub)tree, give
the entry an ‘ARCHIVE’ property with the location as the value (see Chapter 7 [Properties
and Columns], page 68).

When a subtree is moved, it receives a number of special properties that record context
information like the file from where the entry came, its outline path the archiving time
etc. Configure the variable org-archive-save-context-info to adjust the amount of
information added.

When org-archive-subtree-save-file-p is non-nil, save the target archive buffer.

Chapter 9: Refiling and Archiving 98

9.2.2 Internal archiving

If you want to just switch off—for agenda views—certain subtrees without moving them to
a different file, you can use the ‘ARCHIVE’ tag.

A headline that is marked with the ‘ARCHIVE’ tag (see Chapter 6 [Tags], page 63) stays
at its location in the outline tree, but behaves in the following way:

• It does not open when you attempt to do so with a visibility cycling command (see
Section 2.2 [Visibility Cycling], page 7). You can force cycling archived subtrees with
C-c C-TAB, or by setting the option org-cycle-open-archived-trees. Also, normal
outline commands, like org-show-all, open archived subtrees.

• During sparse tree construction (see Section 2.5 [Sparse Trees], page 12), matches in
archived subtrees are not exposed, unless you configure the option org-sparse-tree-

open-archived-trees.

• During agenda view construction (see Chapter 11 [Agenda Views], page 112), the con-
tent of archived trees is ignored unless you configure the option org-agenda-skip-

archived-trees, in which case these trees are always included. In the agenda you can
press v a to get archives temporarily included.

• Archived trees are not exported (see Chapter 13 [Exporting], page 152), only the head-
line is. Configure the details using the variable org-export-with-archived-trees.

• Archived trees are excluded from column view unless the variable org-columns-skip-
archived-trees is configured to nil.

The following commands help manage the ‘ARCHIVE’ tag:

C-c C-x a (org-toggle-archive-tag)
Toggle the archive tag for the current headline. When the tag is set, the headline
changes to a shadowed face, and the subtree below it is hidden.

C-u C-c C-x a

Check if any direct children of the current headline should be archived. To do
this, check each subtree for open TODO entries. If none is found, the command
offers to set the ‘ARCHIVE’ tag for the child. If point is not on a headline when
this command is invoked, check the level 1 trees.

C-c C-TAB (org-cycle-force-archived)
Cycle a tree even if it is tagged with ‘ARCHIVE’.

C-c C-x A (org-archive-to-archive-sibling)
Move the current entry to the Archive Sibling. This is a sibling of the entry
with the heading ‘Archive’ and the archive tag. The entry becomes a child
of that sibling and in this way retains a lot of its original context, including
inherited tags and approximate position in the outline.

Chapter 10: Capture and Attachments 99

10 Capture and Attachments

An important part of any organization system is the ability to quickly capture new ideas
and tasks, and to associate reference material with them. Org does this using a process
called capture. It also can store files related to a task (attachments) in a special directory.
Finally, it can parse RSS feeds for information. To learn how to let external programs
(for example a web browser) trigger Org to capture material, see Section 17.16 [Protocols],
page 271.

10.1 Capture

Capture lets you quickly store notes with little interruption of your work flow. Org’s method
for capturing new items is heavily inspired by John Wiegley’s excellent Remember package.

10.1.1 Setting up capture

The following customization sets a default target file for notes.

(setq org-default-notes-file (concat org-directory "/notes.org"))

You may also define a global key for capturing new material (see Section 1.3 [Activation],
page 3).

10.1.2 Using capture

M-x org-capture (org-capture)
Display the capture templates menu. If you have templates defined (see
Section 10.1.3 [Capture templates], page 100), it offers these templates for
selection. It inserts the template into the target file and switch to an indirect
buffer narrowed to this new node. You may then insert the information you
want.

C-c C-c (org-capture-finalize)
Once you have finished entering information into the capture buffer, C-c C-c

returns you to the window configuration before the capture process, so that you
can resume your work without further distraction. When called with a prefix
argument, finalize and then jump to the captured item.

C-c C-w (org-capture-refile)
Finalize the capture process by refiling the note to a different place (see
Section 9.1 [Refile and Copy], page 96). Please realize that this is a normal
refiling command that will be executed—so point position at the moment you
run this command is important. If you have inserted a tree with a parent and
children, first move point back to the parent. Any prefix argument given to
this command is passed on to the org-refile command.

C-c C-k (org-capture-kill)
Abort the capture process and return to the previous state.

You can also call org-capture in a special way from the agenda, using the k c key
combination. With this access, any timestamps inserted by the selected capture template
defaults to the date at point in the agenda, rather than to the current date.

To find the locations of the last stored capture, use org-capture with prefix commands:

Chapter 10: Capture and Attachments 100

C-u M-x org-capture

Visit the target location of a capture template. You get to select the template
in the usual way.

C-u C-u M-x org-capture

Visit the last stored capture item in its buffer.

You can also jump to the bookmark org-capture-last-stored, which is automatically
created unless you customize org-bookmark-names-plist.

To insert the capture at point in an Org buffer, call org-capture with a C-0 prefix
argument.

10.1.3 Capture templates

You can use templates for different types of capture items, and for different target locations.
The easiest way to create such templates is through the customize interface.

C Customize the variable org-capture-templates.

Before we give the formal description of template definitions, let’s look at an example.
Say you would like to use one template to create general TODO entries, and you want to
put these entries under the heading ‘Tasks’ in your file ‘~/org/gtd.org’. Also, a date tree
in the file ‘journal.org’ should capture journal entries. A possible configuration would
look like:

(setq org-capture-templates

'(("t" "Todo" entry (file+headline "~/org/gtd.org" "Tasks")

"* TODO %?\n %i\n %a")

("j" "Journal" entry (file+datetree "~/org/journal.org")

"* %?\nEntered on %U\n %i\n %a")))

If you then press t from the capture menu, Org will prepare the template for you like
this:

* TODO

[[file:LINK TO WHERE YOU INITIATED CAPTURE]]

During expansion of the template, ‘%a’ has been replaced by a link to the location from
where you called the capture command. This can be extremely useful for deriving tasks
from emails, for example. You fill in the task definition, press C-c C-c and Org returns you
to the same place where you started the capture process.

To define special keys to capture to a particular template without going through the
interactive template selection, you can create your key binding like this:

(define-key global-map (kbd "C-c x")

(lambda () (interactive) (org-capture nil "x")))

10.1.3.1 Template elements

Now lets look at the elements of a template definition. Each entry in org-capture-

templates is a list with the following items:

keys The keys that select the template, as a string, characters only, for example
‘"a"’, for a template to be selected with a single key, or ‘"bt"’ for selection
with two keys. When using several keys, keys using the same prefix key must

Chapter 10: Capture and Attachments 101

be sequential in the list and preceded by a 2-element entry explaining the prefix
key, for example:

("b" "Templates for marking stuff to buy")

If you do not define a template for the C key, this key opens the Customize
buffer for this complex variable.

description
A short string describing the template, shown during selection.

type The type of entry, a symbol. Valid values are:

entry An Org mode node, with a headline. Will be filed as the child of
the target entry or as a top-level entry. The target file should be
an Org file.

item A plain list item, placed in the first plain list at the target location.
Again the target file should be an Org file.

checkitem

A checkbox item. This only differs from the plain list item by the
default template.

table-line

A new line in the first table at the target location. Where exactly
the line will be inserted depends on the properties :prepend and
:table-line-pos (see below).

plain Text to be inserted as it is.

target Specification of where the captured item should be placed. In Org files, targets
usually define a node. Entries will become children of this node. Other types
will be added to the table or list in the body of this node. Most target speci-
fications contain a file name. If that file name is the empty string, it defaults
to org-default-notes-file. A file can also be given as a variable or as a
function called with no argument. When an absolute path is not specified for
a target, it is taken as relative to org-directory.

Valid values are:

‘(file "path/to/file")’
Text will be placed at the beginning or end of that file.

‘(id "id of existing org entry")’
Filing as child of this entry, or in the body of the entry.

‘(file+headline "filename" "node headline")’
‘(file+headline "filename" function-returning-string)’
‘(file+headline "filename" symbol-containing-string)’

Fast configuration if the target heading is unique in the file.

‘(file+olp "filename" "Level 1 heading" "Level 2" ...)’
‘(file+olp "filename" function-returning-list-of-strings)’
‘(file+olp "filename" symbol-containing-list-of-strings)’

For non-unique headings, the full path is safer.

Chapter 10: Capture and Attachments 102

‘(file+regexp "filename" "regexp to find location")’
Use a regular expression to position point.

‘(file+olp+datetree "filename" ["Level 1 heading" ...])’
‘(file+olp+datetree "filename" function-returning-list-of-strings)’
‘(file+olp+datetree "filename" symbol-containing-list-of-strings)’

This target1 creates a heading in a date tree2 for today’s date. If the
optional outline path is given, the tree will be built under the node it
is pointing to, instead of at top level. Check out the :time-prompt
and :tree-type properties below for additional options.

‘(file+function "filename" function-finding-location)’
A function to find the right location in the file.

‘(clock)’ File to the entry that is currently being clocked.

‘(here)’ The position of ‘point’.

‘(function function-finding-location)’
Most general way: write your own function which both visits the
file and moves point to the right location.

template The template for creating the capture item. If you leave this empty, an appro-
priate default template will be used. Otherwise, this is a string with escape
codes, which will be replaced depending on time and context of the capture
call. You may also get this template string from a file3, or dynamically, from a
function using either syntax:

(file "/path/to/template-file")

(function FUNCTION-RETURNING-THE-TEMPLATE)

properties The rest of the entry is a property list of additional options. Recognized prop-
erties are:

:prepend Normally new captured information will be appended at the target
location (last child, last table line, last list item, . . .). Setting this
property changes that.

:immediate-finish

When set, do not offer to edit the information, just file it away im-
mediately. This makes sense if the template only needs information
that can be added automatically.

1 Org used to offer four different targets for date/week tree capture. Now, Org automatically translates
these to use file+olp+datetree, applying the :time-prompt and :tree-type properties. Please rewrite
your date/week-tree targets using file+olp+datetree since the older targets are now deprecated.

2 A date tree is an outline structure with years on the highest level, months or ISO weeks as sublevels and
then dates on the lowest level.

* 2022

** 2022-10 October

*** 2022-10-07 Friday

*** 2022-10-08 Saturday

TODO state, priority, tags, statistics cookies, and COMMENT keywords are allowed in the tree structure.
3 When the file name is not absolute, Org assumes it is relative to org-directory.

Chapter 10: Capture and Attachments 103

:jump-to-captured

When set, jump to the captured entry when finished.

:empty-lines

Set this to the number of lines to insert before and after the new
item. Default 0, and the only other common value is 1.

:empty-lines-after

Set this to the number of lines that should be inserted after the
new item. Overrides :empty-lines for the number of lines inserted
after.

:empty-lines-before

Set this to the number of lines that should be inserted before the
new item. Overrides :empty-lines for the number lines inserted
before.

:clock-in

Start the clock in this item.

:clock-keep

Keep the clock running when filing the captured entry.

:clock-resume

If starting the capture interrupted a clock, restart that clock when
finished with the capture. Note that :clock-keep has precedence
over :clock-resume. When setting both to non-nil, the current
clock will run and the previous one will not be resumed.

:time-prompt

Prompt for a date/time to be used for date/week trees and when
filling the template. Without this property, capture uses the current
date and time. Even if this property has not been set, you can
force the same behavior by calling org-capture with a C-1 prefix
argument.

:tree-type

Use week to make a week tree instead of the month-day tree, i.e.,
place the headings for each day under a heading with the current
ISO week. Use month to group entries by month only. Default is
to group entries by day.

:unnarrowed

Do not narrow the target buffer, simply show the full buffer. De-
fault is to narrow it so that you only see the new material.

:table-line-pos

Specification of the location in the table where the new line should
be inserted. It should be a string like ‘II-3’ meaning that the
new line should become the third line before the second horizontal
separator line.

Chapter 10: Capture and Attachments 104

:kill-buffer

If the target file was not yet visited when capture was invoked, kill
the buffer again after capture is completed.

:no-save Do not save the target file after finishing the capture.

:refile-targets

Temporarily set org-refile-targets to the value of this property.

:hook A nullary function or list of nullary functions run before
org-capture-mode-hook when the template is selected.

:prepare-finalize

A nullary function or list of nullary functions run before
org-capture-prepare-finalize-hook when the template is
selected.

:before-finalize

A nullary function or list of nullary functions run before
org-capture-before-finalize-hook when the template is
selected.

:after-finalize

A nullary function or list of nullary functions run before
org-capture-after-finalize-hook when the template is
selected.

10.1.3.2 Template expansion

In the template itself, special “%-escapes”4 allow dynamic insertion of content. The tem-
plates are expanded in the order given here:

‘%[FILE]’ Insert the contents of the file given by FILE.

‘%(EXP)’ Evaluate Elisp expression EXP and replace it with the result. The EXP form
must return a string. Only placeholders pre-existing within the template, or
introduced with ‘%[file]’, are expanded this way. Since this happens after
expanding non-interactive “%-escapes”, those can be used to fill the expression.

‘%<FORMAT>’
The result of format-time-string on the FORMAT specification.

‘%t’ Timestamp, date only.

‘%T’ Timestamp, with date and time.

‘%u’, ‘%U’ Like ‘%t’, ‘%T’ above, but inactive timestamps.

‘%i’ Initial content, the region when capture is called while the region is active. If
there is text before ‘%i’ on the same line, such as indentation, and ‘%i’ is not
inside a ‘%(exp)’ form, that prefix is added before every line in the inserted
text.

‘%a’ Annotation, normally the link created with org-store-link.

4 If you need one of these sequences literally, escape the ‘%’ with a backslash.

Chapter 10: Capture and Attachments 105

‘%A’ Like ‘%a’, but prompt for the description part.

‘%l’ Like ‘%a’, but only insert the literal link.

‘%L’ Like ‘%l’, but without brackets (the link content itself).

‘%c’ Current kill ring head.

‘%x’ Content of the X clipboard.

‘%k’ Title of the currently clocked task.

‘%K’ Link to the currently clocked task.

‘%n’ Username (taken from user-full-name).

‘%f’ File visited by current buffer when org-capture was called.

‘%F’ Full path of the file or directory visited by current buffer.

‘%:keyword’
Specific information for certain link types, see below.

‘%^g’ Prompt for tags, with completion on tags in target file.

‘%^G’ Prompt for tags, with completion all tags in all agenda files.

‘%^t’ Like ‘%t’, but prompt for date. Similarly, ‘%^T’, ‘%^u’, ‘%^U’. You may define a
prompt like ‘%^{Birthday}t’.

‘%^C’ Interactive selection of which kill or clip to use.

‘%^L’ Like ‘%^C’, but insert as link.

‘%^{PROP}p’
Prompt the user for a value for property PROP. You may specify a default
value with ‘%^{PROP|default}’.

‘%^{PROMPT}X’, X is one of g,G,t,T,u,U,C,L
Prompt the user as in ‘%^X’, but use the custom prompt string. You may specify
a default value and completions with ‘%^{PROMPT|default|completion1|completion2|completion3...}X’.

‘%^{PROMPT}’
Prompt the user for a string and replace this sequence with it.
You may specify a default value and a completion table with
‘%^{prompt|default|completion2|completion3...}’. The arrow
keys access a prompt-specific history.

‘%\N’ Insert the text entered at the Nth ‘%^{PROMPT}’ (but not ‘%^{PROMPT}X’), where
N is a number, starting from 1.

‘%*N’ Same as ‘%\N’, but include all the prompts.

‘%?’ After completing the template, position point here.

For specific link types, the following keywords are defined5:

5 If you define your own link types (see Section A.3 [Adding Hyperlink Types], page 278), any property
you store with org-store-link-props can be accessed in capture templates in a similar way.

Chapter 10: Capture and Attachments 106

Link type Available keywords
bbdb ‘%:name’, ‘%:company’
irc ‘%:server’, ‘%:port’, ‘%:nick’
mh, rmail ‘%:type’, ‘%:subject’, ‘%:message-id’

‘%:from’, ‘%:fromname’, ‘%:fromaddress’
‘%:to’, ‘%:toname’, ‘%:toaddress’
‘%:date’ (message date header field)
‘%:date-timestamp’ (date as active timestamp)
‘%:date-timestamp-inactive’ (date as inactive timestamp)
‘%:fromto’ (either “to NAME” or “from NAME”)6

gnus ‘%:group’, for messages also all email fields
w3, w3m ‘%:url’
info ‘%:file’, ‘%:node’
calendar ‘%:date’
org-protocol ‘%:link’, ‘%:description’, ‘%:annotation’

10.1.3.3 Templates in contexts

To control whether a capture template should be accessible from a specific context, you
can customize org-capture-templates-contexts. Let’s say, for example, that you have a
capture template “p” for storing Gnus emails containing patches. Then you would configure
this option like this:

(setq org-capture-templates-contexts

'(("p" ((in-mode . "message-mode")))))

You can also tell that the command key p should refer to another template. In that
case, add this command key like this:

(setq org-capture-templates-contexts

'(("p" "q" ((in-mode . "message-mode")))))

See the docstring of the variable for more information.

10.2 Attachments

It is often useful to associate reference material with a heading or subtree. Small chunks
of plain text can simply be stored in the subtree of a project. Hyperlinks (see Chapter 4
[Hyperlinks], page 39) can establish associations with files that live elsewhere on a local, or
even remote, computer, like emails or source code files belonging to a project.

Another method is attachments, which are files located in a directory belonging to head-
ing/subtree. Org uses directories either named by ‘ID’ property of a heading, or by a ‘DIR’
property.

10.2.1 Attachment defaults and dispatcher

By default, Org attach uses ‘ID’ properties when adding attachments to headings. This
makes working with attachments fully automated. There is no decision needed for folder-

6 This is always the other, not the user. See the variable org-link-from-user-regexp.

Chapter 10: Capture and Attachments 107

name or location. ‘ID’-based directories are by default located in the ‘data/’ directory,
which lives in the same directory where your Org file lives7.

When attachments are made using org-attach a default tag ‘ATTACH’ is added to the
node that gets the attachments.

For more control over the setup, see Section 10.2.2 [Attachment options], page 108.

The following commands deal with attachments:

C-c C-a (org-attach)
The dispatcher for commands related to the attachment system. After these
keys, a list of commands is displayed, and you must press an additional key to
select a command:

a (org-attach-attach)
Select a file and move it into the task’s attachment directory. The
file is copied, moved, or linked, depending on org-attach-method.
Note that hard links are not supported on all systems.

c/m/l Attach a file using the copy/move/link method. Note that hard
links are not supported on all systems.

b (org-attach-buffer)
Select a buffer and save it as a file in the task’s attachment directory.

n (org-attach-new)
Create a new attachment as an Emacs buffer.

z (org-attach-sync)
Synchronize the current task with its attachment directory, in case
you added attachments yourself.

o (org-attach-open)
Open current task’s attachment. If there is more than one, prompt
for a file name first. Opening follows the rules set by org-file-

apps. For more details, see the information on following hyperlinks
(see Section 4.5 [Handling Links], page 43).

O (org-attach-open-in-emacs)
Also open the attachment, but force opening the file in Emacs.

f (org-attach-reveal)
Open the current task’s attachment directory.

F (org-attach-reveal-in-emacs)
Also open the directory, but force using Dired in Emacs.

d (org-attach-delete-one)
Select and delete a single attachment.

D (org-attach-delete-all)
Delete all of a task’s attachments. A safer way is to open the
directory in Dired and delete from there.

7 If you move entries or Org files from one directory to another, you may want to configure org-attach-

id-dir to contain an absolute path.

Chapter 10: Capture and Attachments 108

s (org-attach-set-directory)
Set a specific directory as the entry’s attachment directory. This
works by putting the directory path into the ‘DIR’ property.

S (org-attach-unset-directory)
Remove the attachment directory. This command removes the ‘DIR’
property and asks the user to either move content inside that folder,
if an ‘ID’ property is set, delete the content, or to leave the attach-
ment directory as is but no longer attached to the heading.

10.2.2 Attachment options

There are a couple of options for attachments that are worth mentioning.

org-attach-id-dir

The directory where attachments are stored when ‘ID’ is used as method.

org-attach-dir-relative

When setting the ‘DIR’ property on a node using C-c C-a s (org-attach-set-
directory), absolute links are entered by default. This option changes that to
relative links.

org-attach-use-inheritance

By default folders attached to a heading are inherited from parents according to
org-use-property-inheritance. If one instead want to set inheritance specif-
ically for Org attach that can be done using org-attach-use-inheritance.
Inheriting documents through the node hierarchy makes a lot of sense in most
cases. Especially when using attachment links (see Section 10.2.3 [Attachment
links], page 109). The following example shows one use case for attachment
inheritance:

* Chapter A ...

:PROPERTIES:

:DIR: Chapter A/

:END:

** Introduction

Some text

#+NAME: Image 1

[[attachment:image 1.jpg]]

Without inheritance one would not be able to resolve the link to ‘image 1.jpg’,
since the link is inside a sub-heading to ‘Chapter A’.

Inheritance works the same way for both ‘ID’ and ‘DIR’ property. If both
properties are defined on the same headline then ‘DIR’ takes precedence. This
is also true if inheritance is enabled. If ‘DIR’ is inherited from a parent node in
the outline, that property still takes precedence over an ‘ID’ property defined
on the node itself.

org-attach-method

When attaching files using the dispatcher C-c C-a it defaults to copying files.
The behavior can be changed by customizing org-attach-method. Options are
Copy, Move/Rename, Hard link or Symbolic link.

Chapter 10: Capture and Attachments 109

org-attach-preferred-new-method

This customization lets you choose the default way to attach to nodes without
existing ‘ID’ and ‘DIR’ property. It defaults to id but can also be set to dir,
ask or nil.

org-attach-archive-delete

Configure this to determine if attachments should be deleted or not when a
subtree that has attachments is archived.

org-attach-auto-tag

When attaching files to a heading it will be assigned a tag according to what
is set here.

org-attach-id-to-path-function-list

When ‘ID’ is used for attachments, the ID is parsed into a part of a
directory-path. See org-attach-id-uuid-folder-format for the default
function. Define a new one and add it as first element in org-attach-id-to-

path-function-list if you want the folder structure in any other way. All
functions in this list will be tried when resolving existing ID’s into paths, to
maintain backward compatibility with existing folders in your system.

org-attach-store-link-p

Stores a link to the file that is being attached. The link is stored in
org-stored-links for later insertion with C-c C-l (see Section 4.5 [Handling
Links], page 43). Depending on what option is set in org-attach-store-

link-p, the link is stored to either the original location as a file link, the
attachment location as an attachment link or to the attachment location as a
file link.

org-attach-commands

List of all commands used in the attach dispatcher.

org-attach-expert

Do not show the splash buffer with the attach dispatcher when org-attach-

expert is set to non-nil.

See customization group ‘Org Attach’ if you want to change the default settings.

10.2.3 Attachment links

Attached files and folders can be referenced using attachment links. This makes it easy
to refer to the material added to heading/subtree. Especially if it was attached using the
unique ‘ID’ of the heading!

* TODO Some task

:PROPERTIES:

:ID: 95d50008-c12e-479f-a4f2-cc0238205319

:END:

See attached document for more information: [[attachment:info.org]]

See Section 4.4 [External Links], page 41 for more information about these links.

Chapter 10: Capture and Attachments 110

10.2.4 Automatic version-control with Git

If the directory attached to a heading is a Git repository, Org can be configured to auto-
matically commit changes to that repository when it sees them.

To make Org mode take care of versioning of attachments for you, add the following to
your Emacs config:

(require 'org-attach-git)

10.2.5 Attach from Dired

It is possible to attach files to a subtree from a Dired buffer. To use this feature, have one
window in Dired mode containing the file(s) to be attached and another window with point
in the subtree that shall get the attachments. In the Dired window, with point on a file,
M-x org-attach-dired-to-subtree attaches the file to the subtree using the attachment
method set by variable org-attach-method. When files are marked in the Dired window
then all marked files get attached.

Add the following lines to the Emacs init file to have C-c C-x a attach files in Dired
buffers.

(add-hook 'dired-mode-hook

(lambda ()

(define-key dired-mode-map

(kbd "C-c C-x a")

#'org-attach-dired-to-subtree)))

The following code shows how to bind the previous command with a specific attachment
method.

(add-hook 'dired-mode-hook

(lambda ()

(define-key dired-mode-map (kbd "C-c C-x c")

(lambda ()

(interactive)

(let ((org-attach-method 'cp))

(call-interactively #'org-attach-dired-to-subtree))))))

10.3 RSS Feeds

Org can add and change entries based on information found in RSS feeds and Atom feeds.
You could use this to make a task out of each new podcast in a podcast feed. Or you could
use a phone-based note-creating service on the web to import tasks into Org. To access
feeds, configure the variable org-feed-alist. The docstring of this variable has detailed
information. With the following

(setq org-feed-alist

'(("Slashdot"

"https://rss.slashdot.org/Slashdot/slashdot"

"~/txt/org/feeds.org" "Slashdot Entries")))

new items from the feed provided by ‘rss.slashdot.org’ result in new entries in the file
‘~/org/feeds.org’ under the heading ‘Slashdot Entries’, whenever the following com-
mand is used:

Chapter 10: Capture and Attachments 111

C-c C-x g (org-feed-update-all)
Collect items from the feeds configured in org-feed-alist and act upon them.

C-c C-x G (org-feed-goto-inbox)
Prompt for a feed name and go to the inbox configured for this feed.

Under the same headline, Org creates a drawer ‘FEEDSTATUS’ in which it stores informa-
tion about the status of items in the feed, to avoid adding the same item several times.

For more information, including how to read atom feeds, see ‘org-feed.el’ and the
docstring of org-feed-alist.

Chapter 11: Agenda Views 112

11 Agenda Views

Due to the way Org works, TODO items, time-stamped items, and tagged headlines can be
scattered throughout a file or even a number of files. To get an overview of open action items,
or of events that are important for a particular date, this information must be collected,
sorted and displayed in an organized way.

Org can select items based on various criteria and display them in a separate buffer. Six
different view types are provided:

• an agenda that is like a calendar and shows information for specific dates,

• a TODO list that covers all unfinished action items,

• a match view, showings headlines based on the tags, properties, and TODO state
associated with them,

• a text search view that shows all entries from multiple files that contain specified key-
words,

• a stuck projects view showing projects that currently do not move along, and

• custom views that are special searches and combinations of different views.

The extracted information is displayed in a special agenda buffer. This buffer is read-
only, but provides commands to visit the corresponding locations in the original Org files,
and even to edit these files remotely.

By default, the report ignores commented (see Section 13.6 [Comment Lines], page 160)
and archived (see Section 9.2.2 [Internal archiving], page 98) entries. You can override this
by setting org-agenda-skip-comment-trees and org-agenda-skip-archived-trees to
nil.

Two variables control how the agenda buffer is displayed and whether the window con-
figuration is restored when the agenda exits: org-agenda-window-setup and org-agenda-

restore-windows-after-quit.

11.1 Agenda Files

The information to be shown is normally collected from all agenda files, the files listed in the
variable org-agenda-files1. If a directory is part of this list, all files with the extension
‘.org’ in this directory are part of the list.

Thus, even if you only work with a single Org file, that file should be put into the list2.
You can customize org-agenda-files, but the easiest way to maintain it is through the
following commands

C-c [(org-agenda-file-to-front)
Add current file to the list of agenda files. The file is added to the front of
the list. If it was already in the list, it is moved to the front. With a prefix
argument, file is added/moved to the end.

1 If the value of that variable is not a list, but a single file name, then the list of agenda files in maintained
in that external file.

2 When using the dispatcher, pressing < before selecting a command actually limits the command to the
current file, and ignores org-agenda-files until the next dispatcher command.

Chapter 11: Agenda Views 113

C-c] (org-remove-file)
Remove current file from the list of agenda files.

C-'

C-, (org-cycle-agenda-files)
Cycle through agenda file list, visiting one file after the other.

M-x org-switchb

Command to use an Iswitchb-like interface to switch to and between Org buffers.

The Org menu contains the current list of files and can be used to visit any of them.

If you would like to focus the agenda temporarily on a file not in this list, or on just one
file in the list, or even on only a subtree in a file, then this can be done in different ways.
For a single agenda command, you may press < once or several times in the dispatcher (see
Section 11.2 [Agenda Dispatcher], page 113). To restrict the agenda scope for an extended
period, use the following commands:

C-c C-x < (org-agenda-set-restriction-lock)
Restrict the agenda to the current subtree. If there already is a restriction at
point, remove it. When called with a universal prefix argument or with point
before the first headline in a file, set the agenda scope to the entire file. This
restriction remains in effect until removed with C-c C-x >, or by typing either <
or > in the agenda dispatcher. If there is a window displaying an agenda view,
the new restriction takes effect immediately.

C-c C-x > (org-agenda-remove-restriction-lock)
Remove the restriction created by C-c C-x <.

When working with Speedbar, you can use the following commands in the Speedbar
frame:

< (org-speedbar-set-agenda-restriction)
Restrict the agenda to the item—either an Org file or a subtree in such a file—at
point in the Speedbar frame. If agenda is already restricted there, remove the
restriction. If there is a window displaying an agenda view, the new restriction
takes effect immediately.

> (org-agenda-remove-restriction-lock)
Remove the restriction.

11.2 The Agenda Dispatcher

The views are created through a dispatcher, accessible with M-x org-agenda, or, better,
bound to a global key (see Section 1.3 [Activation], page 3). It displays a menu from which
an additional letter is required to execute a command. The dispatcher offers the following
default commands:

a Create the calendar-like agenda (see Section 11.3.1 [Weekly/daily agenda],
page 114).

t, T Create a list of all TODO items (see Section 11.3.2 [Global TODO list],
page 117).

Chapter 11: Agenda Views 114

m, M Create a list of headlines matching a given expression (see Section 11.3.3 [Match-
ing tags and properties], page 118).

s Create a list of entries selected by a boolean expression of keywords and/or
regular expressions that must or must not occur in the entry.

/ Search for a regular expression in all agenda files and additionally in the files
listed in org-agenda-text-search-extra-files. This uses the Emacs com-
mand multi-occur. A prefix argument can be used to specify the number of
context lines for each match, the default is 1.

Create a list of stuck projects (see Section 11.3.5 [Stuck projects], page 121).

! Configure the list of stuck projects (see Section 11.3.5 [Stuck projects],
page 121).

< Restrict an agenda command to the current buffer3. If narrowing is in effect
restrict to the narrowed part of the buffer. After pressing <, you still need to
press the character selecting the command.

< < If there is an active region, restrict the following agenda command to the region.
Otherwise, restrict it to the current subtree. After pressing < <, you still need
to press the character selecting the command.

* Toggle sticky agenda views. By default, Org maintains only a single agenda
buffer and rebuilds it each time you change the view, to make sure everything
is always up-to-date. If you switch between views often and the build time
bothers you, you can turn on sticky agenda buffers (make this the default
by customizing the variable org-agenda-sticky). With sticky agendas, the
dispatcher only switches to the selected view, you need to update it by hand
with r or g. You can toggle sticky agenda view any time with org-toggle-

sticky-agenda.

You can also define custom commands that are accessible through the dispatcher, just
like the default commands. This includes the possibility to create extended agenda buffers
that contain several blocks together, for example the weekly agenda, the global TODO list
and a number of special tags matches. See Section 11.6 [Custom Agenda Views], page 134.

11.3 The Built-in Agenda Views

In this section we describe the built-in views.

11.3.1 Weekly/daily agenda

The purpose of the weekly/daily agenda is to act like a page of a paper agenda, showing
all the tasks for the current week or day.

3 For backward compatibility, you can also press 1 to restrict to the current buffer.

Chapter 11: Agenda Views 115

M-x org-agenda a (org-agenda-list)
Compile an agenda for the current week from a list of Org files. The agenda
shows the entries for each day. With a numeric prefix argument4—like C-u 2 1

M-x org-agenda a—you may set the number of days to be displayed.

The default number of days displayed in the agenda is set by the variable org-agenda-
span. This variable can be set to any number of days you want to see by default in the
agenda, or to a span name, such a day, week, month or year. For weekly agendas, the
default is to start on the previous Monday (see org-agenda-start-on-weekday). You
can also set the start date using a date shift: ‘(setq org-agenda-start-day "+10d")’
starts the agenda ten days from today in the future. org-agenda-start-on-weekday takes
precedence over org-agenda-start-day in weekly and bi-weekly agendas.

Remote editing from the agenda buffer means, for example, that you can change the
dates of deadlines and appointments from the agenda buffer. The commands available in
the Agenda buffer are listed in Section 11.5 [Agenda Commands], page 126.

Calendar/Diary integration

Emacs contains the calendar and diary by Edward M. Reingold. The calendar displays
a three-month calendar with holidays from different countries and cultures. The diary
allows you to keep track of anniversaries, lunar phases, sunrise/set, recurrent appointments
(weekly, monthly) and more. In this way, it is quite complementary to Org. It can be very
useful to combine output from Org with the diary.

In order to include entries from the Emacs diary into Org mode’s agenda, you only need
to customize the variable

(setq org-agenda-include-diary t)

After that, everything happens automatically. All diary entries including holidays, anniver-
saries, etc., are included in the agenda buffer created by Org mode. SPC, TAB, and RET

can be used from the agenda buffer to jump to the diary file in order to edit existing diary
entries. The i command to insert new entries for the current date works in the agenda
buffer, as well as the commands S, M, and C to display Sunrise/Sunset times, show lunar
phases and to convert to other calendars, respectively. c can be used to switch back and
forth between calendar and agenda.

If you are using the diary only for expression entries and holidays, it is faster to not use
the above setting, but instead to copy or even move the entries into an Org file. Org mode
evaluates diary-style expression entries, and does it faster because there is no overhead
for first creating the diary display. Note that the expression entries must start at the left
margin, no whitespace is allowed before them, as seen in the following segment of an Org
file:5

* Holidays

:PROPERTIES:

:CATEGORY: Holiday

4 For backward compatibility, the universal prefix argument C-u causes all TODO entries to be listed
before the agenda. This feature is deprecated, use the dedicated TODO list, or a block agenda instead
(see Section 11.6.2 [Block agenda], page 135).

5 The variable org-anniversary used in the example is just like diary-anniversary, but the argument
order is always according to ISO and therefore independent of the value of calendar-date-style.

Chapter 11: Agenda Views 116

:END:

%%(org-calendar-holiday) ; special function for holiday names

* Birthdays

:PROPERTIES:

:CATEGORY: Ann

:END:

%%(org-anniversary 1956 5 14) Arthur Dent is %d years old

%%(org-anniversary 1869 10 2) Mahatma Gandhi would be %d years old

Anniversaries from BBDB

If you are using the Insidious Big Brother Database to store your contacts, you very likely
prefer to store anniversaries in BBDB rather than in a separate Org or diary file. Org
supports this and can show BBDB anniversaries as part of the agenda. All you need to do
is to add the following to one of your agenda files:

* Anniversaries

:PROPERTIES:

:CATEGORY: Anniv

:END:

%%(org-bbdb-anniversaries)

You can then go ahead and define anniversaries for a BBDB record. Basically, you need
a field named ‘anniversary’ for the BBDB record which contains the date in the format
‘YYYY-MM-DD’ or ‘MM-DD’, followed by a space and the class of the anniversary (‘birthday’,
‘wedding’, or a format string). If you omit the class, it defaults to ‘birthday’. Here are a
few examples, the header for the file ‘ol-bbdb.el’ contains more detailed information.

1973-06-22

06-22

1955-08-02 wedding

2008-04-14 %s released version 6.01 of Org mode, %d years ago

After a change to BBDB, or for the first agenda display during an Emacs session,
the agenda display suffers a short delay as Org updates its hash with anniversaries.
However, from then on things will be very fast, much faster in fact than a long list of
‘%%(diary-anniversary)’ entries in an Org or Diary file.

If you would like to see upcoming anniversaries with a bit of forewarning, you can use
the following instead:

* Anniversaries

:PROPERTIES:

:CATEGORY: Anniv

:END:

%%(org-bbdb-anniversaries-future 3)

That will give you three days’ warning: on the anniversary date itself and the two days
prior. The argument is optional: if omitted, it defaults to 7.

Chapter 11: Agenda Views 117

Appointment reminders

Org can interact with Emacs appointments notification facility. To add the appointments
of your agenda files, use the command org-agenda-to-appt. This command lets you filter
through the list of your appointments and add only those belonging to a specific category or
matching a regular expression. It also reads a ‘APPT_WARNTIME’ property which overrides the
value of appt-message-warning-time for this appointment. See the docstring for details.

11.3.2 The global TODO list

The global TODO list contains all unfinished TODO items formatted and collected into a
single place.

M-x org-agenda t (org-todo-list)
Show the global TODO list. This collects the TODO items from all agenda
files (see Chapter 11 [Agenda Views], page 112) into a single buffer. By default,
this lists items with a state that is not a DONE state. The buffer is in Agenda
mode, so there are commands to examine and manipulate the TODO entries
directly from that buffer (see Section 11.5 [Agenda Commands], page 126).

M-x org-agenda T (org-todo-list)
Like the above, but allows selection of a specific TODO keyword. You can
also do this by specifying a prefix argument to t. You are prompted for a
keyword, and you may also specify several keywords by separating them with
‘|’ as the boolean OR operator. With a numeric prefix, the Nth keyword in
org-todo-keywords is selected.

The r key in the agenda buffer regenerates it, and you can give a prefix argument
to this command to change the selected TODO keyword, for example 3 r. If
you often need a search for a specific keyword, define a custom command for it
(see Section 11.2 [Agenda Dispatcher], page 113).

Matching specific TODO keywords can also be done as part of a tags search
(see Section 6.4 [Tag Searches], page 67).

Remote editing of TODO items means that you can change the state of a TODO en-
try with a single key press. The commands available in the TODO list are described in
Section 11.5 [Agenda Commands], page 126.

Normally the global TODO list simply shows all headlines with TODO keywords. This
list can become very long. There are two ways to keep it more compact:

• Some people view a TODO item that has been scheduled for execution or have a
deadline (see Section 8.1 [Timestamps], page 78) as no longer open. Configure the
variables org-agenda-todo-ignore-scheduled to exclude some or all scheduled items
from the global TODO list, org-agenda-todo-ignore-deadlines to exclude some or
all items with a deadline set, org-agenda-todo-ignore-timestamp to exclude some
or all items with an active timestamp other than a DEADLINE or a SCHEDULED
timestamp and/or org-agenda-todo-ignore-with-date to exclude items with at least
one active timestamp.

• TODO items may have sublevels to break up the task into subtasks. In such cases it
may be enough to list only the highest level TODO headline and omit the sublevels

Chapter 11: Agenda Views 118

from the global list. Configure the variable org-agenda-todo-list-sublevels to get
this behavior.

11.3.3 Matching tags and properties

If headlines in the agenda files are marked with tags (see Chapter 6 [Tags], page 63), or
have properties (see Chapter 7 [Properties and Columns], page 68), you can select headlines
based on this metadata and collect them into an agenda buffer. The match syntax described
here also applies when creating sparse trees with C-c / m.

M-x org-agenda m (org-tags-view)
Produce a list of all headlines that match a given set of tags. The com-
mand prompts for a selection criterion, which is a boolean logic expression
with tags, like ‘+work+urgent-withboss’ or ‘work|home’ (see Chapter 6 [Tags],
page 63). If you often need a specific search, define a custom command for it
(see Section 11.2 [Agenda Dispatcher], page 113).

M-x org-agenda M (org-tags-view)
Like m, but only select headlines that are also TODO items. To exclude sched-
uled/deadline items, see the variable org-agenda-tags-todo-honor-ignore-

options. Matching specific TODO keywords together with a tags match is also
possible, see Section 6.4 [Tag Searches], page 67.

The commands available in the tags list are described in Section 11.5 [Agenda Com-
mands], page 126.

A search string can use Boolean operators ‘&’ for AND and ‘|’ for OR. ‘&’ binds more
strongly than ‘|’. Parentheses are currently not implemented. Each element in the search is
either a tag, a regular expression matching tags, or an expression like ‘PROPERTY OPERATOR

VALUE’ with a comparison operator, accessing a property value. Each element may be
preceded by ‘-’ to select against it, and ‘+’ is syntactic sugar for positive selection. The
AND operator ‘&’ is optional when ‘+’ or ‘-’ is present. Here are some examples, using only
tags.

‘+work-boss’
Select headlines tagged ‘work’, but discard those also tagged ‘boss’.

‘work|laptop’
Selects lines tagged ‘work’ or ‘laptop’.

‘work|laptop+night’
Like before, but require the ‘laptop’ lines to be tagged also ‘night’.

Instead of a tag, you may also specify a regular expression enclosed in curly braces (see
Section 17.9 [Regular Expressions], page 265). For example, ‘work+{^boss.*}’ matches
headlines that contain the tag ‘:work:’ and any tag starting with ‘boss’.

Group tags (see Section 6.3 [Tag Hierarchy], page 66) are expanded as regular
expressions. E.g., if ‘work’ is a group tag for the group ‘:work:lab:conf:’, then
searching for ‘work’ also searches for ‘{\(?:work\|lab\|conf\)}’ and searching for
‘-work’ searches for all headlines but those with one of the tags in the group (i.e.,
‘-{\(?:work\|lab\|conf\)}’).

Chapter 11: Agenda Views 119

You may also test for properties (see Chapter 7 [Properties and Columns], page 68) at
the same time as matching tags. The properties may be real properties, or special properties
that represent other metadata (see Section 7.2 [Special Properties], page 70). For example,
the property ‘TODO’ represents the TODO keyword of the entry. Or, the property ‘LEVEL’
represents the level of an entry. So searching ‘+LEVEL=3+boss-TODO="DONE"’ lists all level
three headlines that have the tag ‘boss’ and are not marked with the TODO keyword
‘DONE’. In buffers with org-odd-levels-only set, ‘LEVEL’ does not count the number of
stars, but ‘LEVEL=2’ corresponds to 3 stars etc.

Here are more examples:

‘work+TODO="WAITING"’
Select ‘work’-tagged TODO lines with the specific TODO keyword ‘WAITING’.

‘work+TODO="WAITING"|home+TODO="WAITING"’
Waiting tasks both at work and at home.

When matching properties, a number of different operators can be used to test the value
of a property. Here is a complex example:

+work-boss+PRIORITY="A"+Coffee="unlimited"+Effort<*2

+With={Sarah\|Denny}+SCHEDULED>="<2008-10-11>"

The type of comparison depends on how the comparison value is written:

• If the comparison value is a plain number, a numerical comparison is done, and the
allowed operators are ‘<’, ‘=’, ‘>’, ‘<=’, ‘>=’, and ‘<>’. As a synonym for the equality
operator ‘=’, there is also ‘==’; ‘!=’ and ‘/=’ are synonyms of the inequality operator
‘<>’.

• If the comparison value is enclosed in double-quotes, a string comparison is done, and
the same operators are allowed.

• If the comparison value is enclosed in double-quotes and angular brackets (like
‘DEADLINE<="<2008-12-24 18:30>"’), both values are assumed to be date/time
specifications in the standard Org way, and the comparison is done accordingly.
Valid values also include ‘"<now>"’ for now (including time), ‘"<today>"’, and
‘"<tomorrow>"’ for these days at 0:00 hours, i.e., without a time specification. You
can also use strings like ‘"<+5d>"’ or ‘"<-2m>"’ with units ‘d’, ‘w’, ‘m’, and ‘y’ for day,
week, month, and year, respectively.

• If the comparison value is enclosed in curly braces, a regexp match is performed, with
‘=’ meaning that the regexp matches the property value, and ‘<>’ meaning that it does
not match.

• All operators may be optionally followed by an asterisk ‘*’, like in ‘<*’, ‘!=*’, etc.
Such starred operators work like their regular, unstarred counterparts except that they
match only headlines where the tested property is actually present. This is most useful
for search terms that logically exclude results, like the inequality operator.

So the search string in the example finds entries tagged ‘work’ but not ‘boss’, which
also have a priority value ‘A’, a ‘Coffee’ property with the value ‘unlimited’, an ‘EFFORT’
property that is numerically smaller than 2, a ‘With’ property that is matched by the regular
expression ‘Sarah\|Denny’, and that are scheduled on or after October 11, 2008.

Note that the test on the ‘EFFORT’ property uses operator ‘<*’, so that the search result
will include only entries that actually have an ‘EFFORT’ property defined and with numerical

Chapter 11: Agenda Views 120

value smaller than 2. With the regular ‘<’ operator, the search would handle entries without
an ‘EFFORT’ property as having a zero effort and would include them in the result as well.

You can use all characters valid in property names when matching properties. However,
you have to quote some characters in property names with backslashes when using them in
search strings, namely all characters different from alphanumerics and underscores6. For ex-
ample, to search for all entries having a property ‘boss-prio’, ‘boss:prio’, or ‘boss\prio’,
respectively, with value ‘C’, use search strings

boss\-prio="C"

boss\:prio="C"

boss\\prio="C"

You can configure Org mode to use property inheritance during a search, but beware that
this can slow down searches considerably. See Section 7.4 [Property Inheritance], page 71,
for details.

For backward compatibility, and also for typing speed, there is also a different way to test
TODO states in a search. For this, terminate the tags/property part of the search string
(which may include several terms connected with ‘|’) with a ‘/’ and then specify a Boolean
expression just for TODO keywords. The syntax is then similar to that for tags, but should
be applied with care: for example, a positive selection on several TODO keywords cannot
meaningfully be combined with boolean AND. However, negative selection combined with
AND can be meaningful. To make sure that only lines are checked that actually have any
TODO keyword (resulting in a speed-up), use M-x org-agenda M, or equivalently start the
TODO part after the slash with ‘!’. Using M-x org-agenda M or ‘/!’ does not match TODO
keywords in a DONE state. Examples:

‘work/WAITING’
Same as ‘work+TODO="WAITING"’.

‘work/!-WAITING-NEXT’
Select ‘work’-tagged TODO lines that are neither ‘WAITING’ nor ‘NEXT’.

‘work/!+WAITING|+NEXT’
Select ‘work’-tagged TODO lines that are either ‘WAITING’ or ‘NEXT’.

11.3.4 Search view

This agenda view is a general text search facility for Org mode entries. It is particularly
useful to find notes.

M-x org-agenda s (org-search-view)
This is a special search that lets you select entries by matching a substring or
specific words using a boolean logic.

For example, the search string ‘computer equipment’ matches entries that contain
‘computer equipment’ as a substring, even if the two words are separated by more space
or a line break.

Search view can also search for specific keywords in the entry, using Boolean logic.
The search string ‘+computer +wifi -ethernet -{8\.11[bg]}’ matches note entries that
contain the keywords ‘computer’ and ‘wifi’, but not the keyword ‘ethernet’, and which are

6 If you quote alphanumeric characters or underscores with a backslash, that backslash is ignored.

Chapter 11: Agenda Views 121

also not matched by the regular expression ‘8\.11[bg]’, meaning to exclude both ‘8.11b’
and ‘8.11g’. The first ‘+’ is necessary to turn on boolean search, other ‘+’ characters are
optional. For more details, see the docstring of the command org-search-view.

You can incrementally and conveniently adjust a boolean search from the agenda search
view with the following keys

[Add a positive search word
] Add a negative search word
{ Add a positive regular expression
} Add a negative regular expression

Note that in addition to the agenda files, this command also searches the files listed in
org-agenda-text-search-extra-files.

11.3.5 Stuck projects

If you are following a system like David Allen’s GTD to organize your work, one of the
“duties” you have is a regular review to make sure that all projects move along. A stuck
project is a project that has no defined next actions, so it never shows up in the TODO
lists Org mode produces. During the review, you need to identify such projects and define
next actions for them.

M-x org-agenda # (org-agenda-list-stuck-projects)
List projects that are stuck.

M-x org-agenda !

Customize the variable org-stuck-projects to define what a stuck project is
and how to find it.

You almost certainly need to configure this view before it works for you. The built-in
default assumes that all your projects are level-2 headlines, and that a project is not stuck
if it has at least one entry marked with a TODO keyword ‘TODO’ or ‘NEXT’ or ‘NEXTACTION’.

Let’s assume that you, in your own way of using Org mode, identify projects with a
tag ‘:PROJECT:’, and that you use a TODO keyword ‘MAYBE’ to indicate a project that
should not be considered yet. Let’s further assume that the TODO keyword ‘DONE’ marks
finished projects, and that ‘NEXT’ and ‘TODO’ indicate next actions. The tag ‘:@shop:’
indicates shopping and is a next action even without the NEXT tag. Finally, if the project
contains the special word ‘IGNORE’ anywhere, it should not be listed either. In this case you
would start by identifying eligible projects with a tags/TODO match (see Section 6.4 [Tag
Searches], page 67) ‘+PROJECT/-MAYBE-DONE’, and then check for ‘TODO’, ‘NEXT’, ‘@shop’, and
‘IGNORE’ in the subtree to identify projects that are not stuck. The correct customization
for this is:

(setq org-stuck-projects

'("+PROJECT/-MAYBE-DONE" ("NEXT" "TODO") ("@shop")

"\\<IGNORE\\>"))

Note that if a project is identified as non-stuck, the subtree of this entry is searched for
stuck projects.

Chapter 11: Agenda Views 122

11.4 Presentation and Sorting

Before displaying items in an agenda view, Org mode visually prepares the items and
sorts them. Each item occupies a single line. The line starts with a prefix that contains
the category (see Section 11.4.1 [Categories], page 122) of the item and other important
information. You can customize in which column tags are displayed through org-agenda-

tags-column. You can also customize the prefix using the option org-agenda-prefix-

format. This prefix is followed by a cleaned-up version of the outline headline associated
with the item.

11.4.1 Categories

The category is a broad label assigned to each agenda item. By default, the category is
simply derived from the file name, but you can also specify it with a special line in the
buffer, like this:

#+CATEGORY: Thesis

If you would like to have a special category for a single entry or a (sub)tree, give the
entry a ‘CATEGORY’ property with the special category you want to apply as the value.

The display in the agenda buffer looks best if the category is not longer than 10 charac-
ters. You can set up icons for category by customizing the org-agenda-category-icon-

alist variable.

11.4.2 Time-of-day specifications

Org mode checks each agenda item for a time-of-day specification. The time can be part of
the timestamp that triggered inclusion into the agenda, for example

<2005-05-10 Tue 19:00>

Time ranges can be specified with two timestamps:

<2005-05-10 Tue 20:30>--<2005-05-10 Tue 22:15>

In the headline of the entry itself, a time(range)—like ‘12:45’ or a ‘8:30-1pm’—may also
appear as plain text7.

If the agenda integrates the Emacs diary (see Section 11.3.1 [Weekly/daily agenda],
page 114), time specifications in diary entries are recognized as well.

For agenda display, Org mode extracts the time and displays it in a standard 24-hour
format as part of the prefix. The example times in the previous paragraphs would end up
in the agenda like this:

8:30-13:00 Arthur Dent lies in front of the bulldozer

12:45...... Ford Prefect arrives and takes Arthur to the pub

19:00...... The Vogon reads his poem

20:30-22:15 Marvin escorts the Hitchhikers to the bridge

If the agenda is in single-day mode, or for the display of today, the timed entries are
embedded in a time grid, like

8:00...... ------------------

8:30-13:00 Arthur Dent lies in front of the bulldozer

7 You can, however, disable this by setting org-agenda-search-headline-for-time variable to a nil

value.

Chapter 11: Agenda Views 123

10:00...... ------------------

12:00...... ------------------

12:45...... Ford Prefect arrives and takes Arthur to the pub

14:00...... ------------------

16:00...... ------------------

18:00...... ------------------

19:00...... The Vogon reads his poem

20:00...... ------------------

20:30-22:15 Marvin escorts the Hitchhikers to the bridge

The time grid can be turned on and off with the variable org-agenda-use-time-grid,
and can be configured with org-agenda-time-grid.

11.4.3 Sorting of agenda items

Before being inserted into a view, the items are sorted. How this is done depends on the
type of view.

• For the daily/weekly agenda, the items for each day are sorted. The default order is
to first collect all items containing an explicit time-of-day specification. These entries
are shown at the beginning of the list, as a schedule for the day. After that, items
remain grouped in categories, in the sequence given by org-agenda-files. Within
each category, items are sorted by urgency, which is composed of the base priority (see
Section 5.4 [Priorities], page 58; 2000 for priority ‘A’, 1000 for ‘B’, and 0 for ‘C’), plus
additional increments for overdue scheduled or deadline items.

• For the TODO list, items remain in the order of categories, but within each category,
sorting takes place according to urgency. The urgency used for sorting derives from
the priority cookie, with additions depending on how close an item is to its due or
scheduled date.

• For tags matches, items are not sorted at all, but just appear in the sequence in which
they are found in the agenda files.

Sorting can be customized using the variable org-agenda-sorting-strategy, and may
also include criteria based on the estimated effort of an entry (see Section 8.5 [Effort Esti-
mates], page 93).

11.4.4 Filtering/limiting agenda items

Agenda built-in or custom commands are statically defined. Agenda filters and limits allow
flexibly narrowing down the list of agenda entries.

Filters only change the visibility of items, are very fast and are mostly used interactively8.
You can switch quickly between different filters without having to recreate the agenda.
Limits on the other hand take effect before the agenda buffer is populated, so they are
mostly useful when defined as local variables within custom agenda commands.

8 Custom agenda commands can preset a filter by binding one of the variables org-agenda-tag-

filter-preset, org-agenda-category-filter-preset, org-agenda-effort-filter-preset or
org-agenda-regexp-filter-preset as an option. This filter is then applied to the view and persists
as a basic filter through refreshes and more secondary filtering. The filter is a global property of the
entire agenda view—in a block agenda, you should only set this in the global options section, not in the
section of an individual block.

Chapter 11: Agenda Views 124

Filtering in the agenda

The general filtering command is org-agenda-filter, bound to /. Before we introduce
it, we describe commands for individual filter types. All filtering commands handle prefix
arguments in the same way: A single C-u prefix negates the filter, so it removes lines selected
by the filter. A double prefix adds the new filter condition to the one(s) already in place,
so filter elements are accumulated.

\ (org-agenda-filter-by-tag)
Filter the agenda view with respect to a tag. You are prompted for a tag
selection letter; SPC means any tag at all. Pressing TAB at that prompt offers
completion to select a tag, including any tags that do not have a selection
character. The command then hides all entries that do not contain or inherit
this tag. Pressing + or - at the prompt switches between filtering for and against
the next tag. To clear the filter, press \ twice (once to call the command again,
and once at the prompt).

< (org-agenda-filter-by-category)
Filter by category of the line at point, and show only entries with this category.
When called with a prefix argument, hide all entries with the category at point.
To clear the filter, call this command again by pressing <.

= (org-agenda-filter-by-regexp)
Filter the agenda view by a regular expression: only show agenda entries match-
ing the regular expression the user entered. To clear the filter, call the command
again by pressing =.

_ (org-agenda-filter-by-effort)
Filter the agenda view with respect to effort estimates, so select tasks that take
the right amount of time. You first need to set up a list of efforts globally, for
example

(setq org-global-properties

'(("Effort_ALL". "0 0:10 0:30 1:00 2:00 3:00 4:00")))

You can then filter for an effort by first typing an operator, one of <, > and
=, and then the one-digit index of an effort estimate in your array of allowed
values, where 0 means the 10th value. The filter then restricts to entries with
effort smaller-or-equal, equal, or larger-or-equal than the selected value. For
application of the operator, entries without a defined effort are treated according
to the value of org-sort-agenda-noeffort-is-high. To clear the filter, press
_ twice (once to call the command again, and once at the first prompt).

^ (org-agenda-filter-by-top-headline)
Filter the current agenda view and only display items that fall under the same
top-level headline as the current entry. To clear the filter, call this command
again by pressing ^.

/ (org-agenda-filter)
This is the unified interface to four of the five filter methods described above.
At the prompt, specify different filter elements in a single string, with full
completion support. For example,

Chapter 11: Agenda Views 125

+work-John+<0:10-/plot/

selects entries with category ‘work’ and effort estimates below 10 minutes, and
deselects entries with tag ‘John’ or matching the regexp ‘plot’ (see Section 17.9
[Regular Expressions], page 265). You can leave ‘+’ out if that does not lead to
ambiguities. The sequence of elements is arbitrary. The filter syntax assumes
that there is no overlap between categories and tags. Otherwise, tags take
priority. If you reply to the prompt with the empty string, all filtering is
removed. If a filter is specified, it replaces all current filters. But if you call
the command with a double prefix argument, or if you add an additional ‘+’
(e.g., ‘++work’) to the front of the string, the new filter elements are added to
the active ones. A single prefix argument applies the entire filter in a negative
sense.

| (org-agenda-filter-remove-all)
Remove all filters in the current agenda view.

Computed tag filtering

If the variable org-agenda-auto-exclude-function is set to a user-defined function, that
function can select tags that should be used as a tag filter when requested. The function will
be called with lower-case versions of all tags represented in the current view. The function
should return ‘"-tag"’ if the filter should remove entries with that tag, ‘"+tag"’ if only
entries with this tag should be kept, or ‘nil’ if that tag is irrelevant. For example, let’s say
you use a ‘Net’ tag to identify tasks which need network access, an ‘Errand’ tag for errands
in town, and a ‘Call’ tag for making phone calls. You could auto-exclude these tags based
on the availability of the Internet, and outside of business hours, with something like this:

(defun my-auto-exclude-fn (tag)

(when (cond ((string= tag "net")

(/= 0 (call-process "/sbin/ping" nil nil nil

"-c1" "-q" "-t1" "mail.gnu.org")))

((member tag '("errand" "call"))

(let ((hr (nth 2 (decode-time))))

(or (< hr 8) (> hr 21)))))

(concat "-" tag)))

(setq org-agenda-auto-exclude-function #'my-auto-exclude-fn)

You can apply this self-adapting filter by using a triple prefix argument to org-agenda-

filter, i.e. press C-u C-u C-u /, or by pressing RET in org-agenda-filter-by-tag.

Setting limits for the agenda

Here is a list of options that you can set, either globally, or locally in your custom agenda
views (see Section 11.6 [Custom Agenda Views], page 134).

org-agenda-max-entries

Limit the number of entries.

org-agenda-max-effort

Limit the duration of accumulated efforts (as minutes).

Chapter 11: Agenda Views 126

org-agenda-max-todos

Limit the number of entries with TODO keywords.

org-agenda-max-tags

Limit the number of tagged entries.

When set to a positive integer, each option excludes entries from other categories: for
example, ‘(setq org-agenda-max-effort 100)’ limits the agenda to 100 minutes of effort
and exclude any entry that has no effort property. If you want to include entries with no
effort property, use a negative value for org-agenda-max-effort. One useful setup is to
use org-agenda-max-entries locally in a custom command. For example, this custom
command displays the next five entries with a ‘NEXT’ TODO keyword.

(setq org-agenda-custom-commands

'(("n" todo "NEXT"

((org-agenda-max-entries 5)))))

Once you mark one of these five entry as DONE, rebuilding the agenda will again the
next five entries again, including the first entry that was excluded so far.

You can also dynamically set temporary limits, which are lost when rebuilding the
agenda:

~ (org-agenda-limit-interactively)
This prompts for the type of limit to apply and its value.

11.5 Commands in the Agenda Buffer

Entries in the agenda buffer are linked back to the Org file or diary file where they originate.
You are not allowed to edit the agenda buffer itself, but commands are provided to show and
jump to the original entry location, and to edit the Org files “remotely” from the agenda
buffer. In this way, all information is stored only once, removing the risk that your agenda
and note files may diverge.

Some commands can be executed with mouse clicks on agenda lines. For the other
commands, point needs to be in the desired line.

Motion

n (org-agenda-next-line)
Next line (same as DOWN and C-n).

p (org-agenda-previous-line)
Previous line (same as UP and C-p).

View/Go to Org file

SPC or mouse-3 (org-agenda-show-and-scroll-up)
Display the original location of the item in another window. With a prefix
argument, make sure that drawers stay folded.

L (org-agenda-recenter)
Display original location and recenter that window.

TAB or mouse-2 (org-agenda-goto)
Go to the original location of the item in another window.

Chapter 11: Agenda Views 127

RET (org-agenda-switch-to)
Go to the original location of the item and delete other windows.

F (org-agenda-follow-mode)
Toggle Follow mode. In Follow mode, as you move point through the agenda
buffer, the other window always shows the corresponding location in the Org
file. The initial setting for this mode in new agenda buffers can be set with the
variable org-agenda-start-with-follow-mode.

C-c C-x b (org-agenda-tree-to-indirect-buffer)
Display the entire subtree of the current item in an indirect buffer. With a
numeric prefix argument N, go up to level N and then take that tree. If N
is negative, go up that many levels. With a C-u prefix, do not remove the
previously used indirect buffer.

C-c C-o (org-agenda-open-link)
Follow a link in the entry. This offers a selection of any links in the text
belonging to the referenced Org node. If there is only one link, follow it without
a selection prompt.

Change display

A Interactively select another agenda view and append it to the current view.

o Delete other windows.

v d or short d (org-agenda-day-view)
Switch to day view. When switching to day view, this setting becomes the
default for subsequent agenda refreshes. A numeric prefix argument may be
used to jump directly to a specific day of the year. For example, 32 d jumps
to February 1st. When setting day view, a year may be encoded in the prefix
argument as well. For example, 200712 d jumps to January 12, 2007. If such a
year specification has only one or two digits, it is expanded into one of the 30
next years or the last 69 years.

v w or short w (org-agenda-week-view)
Switch to week view. When switching week view, this setting becomes the
default for subsequent agenda refreshes. A numeric prefix argument may be
used to jump directly to a specific day of the ISO week. For example 9 w to
ISO week number 9. When setting week view, a year may be encoded in the
prefix argument as well. For example, 200712 w jumps to week 12 in 2007. If
such a year specification has only one or two digits, it is expanded into one of
the 30 next years or the last 69 years.

v m (org-agenda-month-view)
Switch to month view. Because month views are slow to create, they do not
become the default for subsequent agenda refreshes. A numeric prefix argument
may be used to jump directly to a specific day of the month. When setting
month view, a year may be encoded in the prefix argument as well. For example,
200712 m jumps to December 2007. If such a year specification has only one or
two digits, it is expanded into one of the 30 next years or the last 69 years.

Chapter 11: Agenda Views 128

v y (org-agenda-year-view)
Switch to year view. Because year views are slow to create, they do not become
the default for subsequent agenda refreshes. A numeric prefix argument may
be used to jump directly to a specific day of the year.

v SPC (org-agenda-reset-view)
Reset the current view to org-agenda-span.

f (org-agenda-later)
Go forward in time to display the span following the current one. For example, if
the display covers a week, switch to the following week. With a prefix argument,
repeat that many times.

b (org-agenda-earlier)
Go backward in time to display earlier dates.

. (org-agenda-goto-today)
Go to today.

j (org-agenda-goto-date)
Prompt for a date and go there.

J (org-agenda-clock-goto)
Go to the currently clocked-in task in the agenda buffer.

D (org-agenda-toggle-diary)
Toggle the inclusion of diary entries. See Section 11.3.1 [Weekly/daily agenda],
page 114.

v l or v L or short l (org-agenda-log-mode)
Toggle Logbook mode. In Logbook mode, entries that were marked as done
while logging was on (see the variable org-log-done) are shown in the agenda,
as are entries that have been clocked on that day. You can configure the entry
types that should be included in log mode using the variable org-agenda-log-
mode-items. When called with a C-u prefix argument, show all possible logbook
entries, including state changes. When called with two prefix arguments C-u

C-u, show only logging information, nothing else. v L is equivalent to C-u v l.

v [or short [(org-agenda-manipulate-query-add)
Include inactive timestamps into the current view. Only for weekly/daily
agenda.

v a (org-agenda-archives-mode)
Toggle Archives mode. In Archives mode, trees that are archived (see
Section 9.2.2 [Internal archiving], page 98) are also scanned when producing
the agenda. To exit archives mode, press v a again. The initial setting for
this mode in new agenda buffers can set with the variable org-agenda-

start-with-archives-mode, which can be set with the same values as
org-agenda-archives-mode.

v A Toggle Archives mode. Include all archive files as well.

Chapter 11: Agenda Views 129

v R or short R (org-agenda-clockreport-mode)
Toggle Clockreport mode. In Clockreport mode, the daily/weekly agenda al-
ways shows a table with the clocked times for the time span and file scope cov-
ered by the current agenda view. The initial setting for this mode in new agenda
buffers can be set with the variable org-agenda-start-with-clockreport-

mode. By using a prefix argument when toggling this mode (i.e., C-u R), the
clock table does not show contributions from entries that are hidden by agenda
filtering9. See also the variables org-clock-report-include-clocking-task
and org-agenda-clock-report-header.

v c Show overlapping clock entries, clocking gaps, and other clocking problems in
the current agenda range. You can then visit clocking lines and fix them manu-
ally. See the variable org-agenda-clock-consistency-checks for information
on how to customize the definition of what constituted a clocking problem. To
return to normal agenda display, press l to exit Logbook mode.

v E or short E (org-agenda-entry-text-mode)
Toggle entry text mode. In entry text mode, a number of lines from the
Org heading referenced by an agenda line are displayed below the line. The
maximum number of lines is given by the variable org-agenda-entry-text-

maxlines. Calling this command with a numeric prefix argument temporarily
modifies that number to the prefix value.

G (org-agenda-toggle-time-grid)
Toggle the time grid on and off. See also the variables org-agenda-use-time-
grid and org-agenda-time-grid.

r (org-agenda-redo), g
Recreate the agenda buffer, for example to reflect the changes after modification
of the timestamps of items with S-LEFT and S-RIGHT. When the buffer is the
global TODO list, a prefix argument is interpreted to create a selective list for
a specific TODO keyword.

C-x C-s or short s (org-save-all-org-buffers)
Save all Org buffers in the current Emacs session, and also the locations of IDs.

C-c C-x C-c (org-agenda-columns)
Invoke column view (see Section 7.5 [Column View], page 72) in the agenda
buffer. The column view format is taken from the entry at point, or, if there
is no entry at point, from the first entry in the agenda view. So whatever the
format for that entry would be in the original buffer (taken from a property,
from a ‘COLUMNS’ keyword, or from the default variable org-columns-default-
format) is used in the agenda.

C-c C-x > (org-agenda-remove-restriction-lock)
Remove the restriction lock on the agenda, if it is currently restricted to a file
or subtree (see Section 11.1 [Agenda Files], page 112).

M-UP (org-agenda-drag-line-backward)
Drag the line at point backward one line. With a numeric prefix argument,
drag backward by that many lines.

9 Only tags filtering is respected here, effort filtering is ignored.

Chapter 11: Agenda Views 130

Moving agenda lines does not persist after an agenda refresh and does not
modify the contributing Org files.

M-DOWN (org-agenda-drag-line-forward)
Drag the line at point forward one line. With a numeric prefix argument, drag
forward by that many lines.

Remote editing

0--9 Digit argument.

C-_ (org-agenda-undo)
Undo a change due to a remote editing command. The change is undone both
in the agenda buffer and in the remote buffer.

t (org-agenda-todo)
Change the TODO state of the item, both in the agenda and in the original
Org file. A prefix argument is passed through to the org-todo command, so
for example a C-u prefix are will trigger taking a note to document the state
change.

C-S-RIGHT (org-agenda-todo-nextset)
Switch to the next set of TODO keywords.

C-S-LEFT, org-agenda-todo-previousset
Switch to the previous set of TODO keywords.

C-k (org-agenda-kill)
Delete the current agenda item along with the entire subtree belonging to it in
the original Org file. If the text to be deleted remotely is longer than one line,
the kill needs to be confirmed by the user. See variable org-agenda-confirm-
kill.

C-c C-w (org-agenda-refile)
Refile the entry at point.

C-c C-x C-a or short a (org-agenda-archive-default-with-confirmation)
Archive the subtree corresponding to the entry at point using the default archiv-
ing command set in org-archive-default-command. When using the a key,
confirmation is required.

C-c C-x a (org-agenda-toggle-archive-tag)
Toggle the archive tag (see Section 9.2.2 [Internal archiving], page 98) for the
current headline.

C-c C-x A (org-agenda-archive-to-archive-sibling)
Move the subtree corresponding to the current entry to its archive sibling.

C-c C-x C-s or short $ (org-agenda-archive)
Archive the subtree corresponding to the current headline. This means the
entry is moved to the configured archive location, most likely a different file.

T (org-agenda-show-tags)
Show all tags associated with the current item. This is useful if you have
turned off org-agenda-show-inherited-tags, but still want to see all tags of
a headline occasionally.

Chapter 11: Agenda Views 131

: (org-agenda-set-tags)
Set tags for the current headline. If there is an active region in the agenda,
change a tag for all headings in the region.

, (org-agenda-priority)
Set the priority for the current item. Org mode prompts for the priority char-
acter. If you reply with SPC, the priority cookie is removed from the entry.

+ or S-UP (org-agenda-priority-up)
Increase the priority of the current item. The priority is changed in the original
buffer, but the agenda is not resorted. Use the r key for this.

- or S-DOWN (org-agenda-priority-down)
Decrease the priority of the current item.

C-c C-x e or short e (org-agenda-set-effort)
Set the effort property for the current item.

C-c C-z or short z (org-agenda-add-note)
Add a note to the entry. This note is recorded, and then filed to the same loca-
tion where state change notes are put. Depending on org-log-into-drawer,
this may be inside a drawer.

C-c C-a (org-attach)
Dispatcher for all command related to attachments.

C-c C-s (org-agenda-schedule)
Schedule this item. With a prefix argument, remove the scheduling timestamp

C-c C-d (org-agenda-deadline)
Set a deadline for this item. With a prefix argument, remove the deadline.

S-RIGHT (org-agenda-do-date-later)
Change the timestamp associated with the current line by one day into the
future. If the date is in the past, the first call to this command moves it to
today. With a numeric prefix argument, change it by that many days. For
example, 3 6 5 S-RIGHT changes it by a year. With a C-u prefix, change the
time by one hour. If you immediately repeat the command, it will continue to
change hours even without the prefix argument. With a double C-u C-u prefix,
do the same for changing minutes. The stamp is changed in the original Org
file, but the change is not directly reflected in the agenda buffer. Use r or g to
update the buffer.

S-LEFT (org-agenda-do-date-earlier)
Change the timestamp associated with the current line by one day into the
past.

> (org-agenda-date-prompt)
Change the timestamp associated with the current line. The key > has been
chosen, because it is the same as S-. on my keyboard.

I (org-agenda-clock-in)
Start the clock on the current item. If a clock is running already, it is stopped
first.

Chapter 11: Agenda Views 132

O (org-agenda-clock-out)
Stop the previously started clock.

X (org-agenda-clock-cancel)
Cancel the currently running clock.

J (org-agenda-clock-goto)
Jump to the running clock in another window.

k (org-agenda-capture)
Like org-capture, but use the date at point as the default date for the cap-
ture template. See org-capture-use-agenda-date to make this the default
behavior of org-capture.

Bulk remote editing selected entries

m (org-agenda-bulk-mark)
Mark the entry at point for bulk action. If there is an active region in the
agenda, mark the entries in the region. With numeric prefix argument, mark
that many successive entries.

* (org-agenda-bulk-mark-all)
Mark all visible agenda entries for bulk action.

u (org-agenda-bulk-unmark)
Unmark entry for bulk action.

U (org-agenda-bulk-unmark-all)
Unmark all marked entries for bulk action.

M-m (org-agenda-bulk-toggle)
Toggle mark of the entry at point for bulk action.

M-* (org-agenda-bulk-toggle-all)
Toggle mark of every entry for bulk action.

% (org-agenda-bulk-mark-regexp)
Mark entries matching a regular expression for bulk action.

B (org-agenda-bulk-action)
Bulk action: act on all marked entries in the agenda. This prompts for another
key to select the action to be applied. The prefix argument to B is passed
through to the s and d commands, to bulk-remove these special timestamps.
By default, marks are removed after the bulk. If you want them to persist, set
org-agenda-bulk-persistent-marks to t or hit p at the prompt.

p Toggle persistent marks.

$ Archive all selected entries.

A Archive entries by moving them to their respective archive siblings.

t Change TODO state. This prompts for a single TODO keyword
and changes the state of all selected entries, bypassing blocking and
suppressing logging notes—but not timestamps.

Chapter 11: Agenda Views 133

+ Add a tag to all selected entries.

- Remove a tag from all selected entries.

s Schedule all items to a new date. To shift existing schedule dates
by a fixed number of days, use something starting with double plus
at the prompt, for example ‘++8d’ or ‘++2w’.

d Set deadline to a specific date.

r Prompt for a single refile target and move all entries. The entries
are no longer in the agenda; refresh (g) to bring them back.

S Reschedule randomly into the coming N days. N is prompted for.
With a prefix argument (C-u B S), scatter only across weekdays.

f Apply a function10 to marked entries. For example, the function
below sets the ‘CATEGORY’ property of the entries to ‘web’.

(defun set-category ()

(interactive "P")

(let ((marker (or (org-get-at-bol 'org-hd-marker)

(org-agenda-error))))

(org-with-point-at marker

(org-back-to-heading t)

(org-set-property "CATEGORY" "web"))))

Calendar commands

c (org-agenda-goto-calendar)
Open the Emacs calendar and go to the date at point in the agenda.

c (org-calendar-goto-agenda)
When in the calendar, compute and show the Org agenda for the date at point.

i (org-agenda-diary-entry)
Insert a new entry into the diary, using the date at point and (for block entries)
the date at the mark. This adds to the Emacs diary file11, in a way similar
to the i command in the calendar. The diary file pops up in another window,
where you can add the entry.

If you configure org-agenda-diary-file to point to an Org file, Org creates en-
tries in that file instead. Most entries are stored in a date-based outline tree that
will later make it easy to archive appointments from previous months/years.
The tree is built under an entry with a ‘DATE_TREE’ property, or else with years
as top-level entries. Emacs prompts you for the entry text—if you specify it,
the entry is created in org-agenda-diary-file without further interaction.
If you directly press RET at the prompt without typing text, the target file is
shown in another window for you to finish the entry there. See also the k r

command.

10 You can also create persistent custom functions through org-agenda-bulk-custom-functions.
11 This file is parsed for the agenda when org-agenda-include-diary is set.

Chapter 11: Agenda Views 134

M (org-agenda-phases-of-moon)
Show the phases of the moon for the three months around current date.

S (org-agenda-sunrise-sunset)
Show sunrise and sunset times. The geographical location must be set with
calendar variables, see the documentation for the Emacs calendar.

C (org-agenda-convert-date)
Convert the date at point into many other cultural and historic calendars.

H (org-agenda-holidays)
Show holidays for three months around point date.

Quit and exit

q (org-agenda-quit)
Quit agenda, remove the agenda buffer.

x (org-agenda-exit)
Exit agenda, remove the agenda buffer and all buffers loaded by Emacs for the
compilation of the agenda. Buffers created by the user to visit Org files are not
removed.

11.6 Custom Agenda Views

Custom agenda commands serve two purposes: to store and quickly access frequently used
TODO and tags searches, and to create special composite agenda buffers. Custom agenda
commands are accessible through the dispatcher (see Section 11.2 [Agenda Dispatcher],
page 113), just like the default commands.

11.6.1 Storing searches

The first application of custom searches is the definition of keyboard shortcuts for frequently
used searches, either creating an agenda buffer, or a sparse tree (the latter covering of course
only the current buffer).

Custom commands are configured in the variable org-agenda-custom-commands. You
can customize this variable, for example by pressing C from the agenda dispatcher (see
Section 11.2 [Agenda Dispatcher], page 113). You can also directly set it with Emacs Lisp
in the Emacs init file. The following example contains all valid agenda views:

(setq org-agenda-custom-commands

'(("x" agenda)

("y" agenda*)

("w" todo "WAITING")

("W" todo-tree "WAITING")

("u" tags "+boss-urgent")

("v" tags-todo "+boss-urgent")

("U" tags-tree "+boss-urgent")

("f" occur-tree "\\<FIXME\\>")

("h" . "HOME+Name tags searches") ;description for "h" prefix

("hl" tags "+home+Lisa")

("hp" tags "+home+Peter")

Chapter 11: Agenda Views 135

("hk" tags "+home+Kim")))

The initial string in each entry defines the keys you have to press after the dispatcher
command in order to access the command. Usually this is just a single character, but if
you have many similar commands, you can also define two-letter combinations where the
first character is the same in several combinations and serves as a prefix key12. The second
parameter is the search type, followed by the string or regular expression to be used for the
matching. The example above will therefore define:

x as a global search for agenda entries planned13 this week/day.

y as the same search, but only for entries with an hour specification like
‘[h]h:mm’—think of them as appointments.

w as a global search for TODO entries with ‘WAITING’ as the TODO keyword.

W as the same search, but only in the current buffer and displaying the results as
a sparse tree.

u as a global tags search for headlines tagged ‘boss’ but not ‘urgent’.

v The same search, but limiting it to headlines that are also TODO items.

U as the same search, but only in the current buffer and displaying the result as
a sparse tree.

f to create a sparse tree (again, current buffer only) with all entries containing
the word ‘FIXME’.

h as a prefix command for a ‘HOME’ tags search where you have to press an addi-
tional key (l, p or k) to select a name (Lisa, Peter, or Kim) as additional tag
to match.

Note that *-tree agenda views need to be called from an Org buffer as they operate on
the current buffer only.

11.6.2 Block agenda

Another possibility is the construction of agenda views that comprise the results of several
commands, each of which creates a block in the agenda buffer. The available commands
include agenda for the daily or weekly agenda (as created with a), alltodo for the global
TODO list (as constructed with t), stuck for the list of stuck projects (as obtained with
#) and the matching commands discussed above: todo, tags, and tags-todo.

Here are two examples:

(setq org-agenda-custom-commands

'(("h" "Agenda and Home-related tasks"

((agenda "")

(tags-todo "home")

(tags "garden")))

12 You can provide a description for a prefix key by inserting a cons cell with the prefix and the description.
13 Planned means here that these entries have some planning information attached to them, like a time-

stamp, a scheduled or a deadline string. See org-agenda-entry-types on how to set what planning
information is taken into account.

Chapter 11: Agenda Views 136

("o" "Agenda and Office-related tasks"

((agenda "")

(tags-todo "work")

(tags "office")))))

This defines h to create a multi-block view for stuff you need to attend to at home. The
resulting agenda buffer contains your agenda for the current week, all TODO items that
carry the tag ‘home’, and also all lines tagged with ‘garden’. Finally, the command o

provides a similar view for office tasks.

11.6.3 Setting options for custom commands

Org mode contains a number of variables regulating agenda construction and display. The
global variables define the behavior for all agenda commands, including the custom com-
mands. However, if you want to change some settings just for a single custom view, you
can do so. Setting options requires inserting a list of variable names and values at the right
spot in org-agenda-custom-commands. For example:

(setq org-agenda-custom-commands

'(("w" todo "WAITING"

((org-agenda-sorting-strategy '(priority-down))

(org-agenda-prefix-format " Mixed: ")))

("U" tags-tree "+boss-urgent"

((org-show-context-detail 'minimal)))

("N" search ""

((org-agenda-files '("~org/notes.org"))

(org-agenda-text-search-extra-files nil)))))

Now the w command sorts the collected entries only by priority, and the prefix format is
modified to just say ‘Mixed:’ instead of giving the category of the entry. The sparse tags
tree of U now turns out ultra-compact, because neither the headline hierarchy above the
match, nor the headline following the match are shown. The command N does a text search
limited to only a single file.

For command sets creating a block agenda, org-agenda-custom-commands has two sep-
arate spots for setting options. You can add options that should be valid for just a single
command in the set, and options that should be valid for all commands in the set. The
former are just added to the command entry; the latter must come after the list of com-
mand entries. Going back to the block agenda example (see Section 11.6.2 [Block agenda],
page 135), let’s change the sorting strategy for the h commands to priority-down, but let’s
sort the results for ‘garden’ tags query in the opposite order, priority-up. This would
look like this:

(setq org-agenda-custom-commands

'(("h" "Agenda and Home-related tasks"

((agenda)

(tags-todo "home")

(tags "garden"

((org-agenda-sorting-strategy '(priority-up)))))

((org-agenda-sorting-strategy '(priority-down))))

("o" "Agenda and Office-related tasks"

((agenda)

Chapter 11: Agenda Views 137

(tags-todo "work")

(tags "office")))))

As you see, the values and parentheses setting is a little complex. When in doubt, use
the customize interface to set this variable—it fully supports its structure. Just one caveat:
when setting options in this interface, the values are just Lisp expressions. So if the value
is a string, you need to add the double-quotes around the value yourself.

To control whether an agenda command should be accessible from a specific context,
you can customize org-agenda-custom-commands-contexts. Let’s say for example that
you have an agenda command o displaying a view that you only need when reading emails.
Then you would configure this option like this:

(setq org-agenda-custom-commands-contexts

'(("o" (in-mode . "message-mode"))))

You can also tell that the command key o should refer to another command key r. In
that case, add this command key like this:

(setq org-agenda-custom-commands-contexts

'(("o" "r" (in-mode . "message-mode"))))

See the docstring of the variable for more information.

11.7 Exporting Agenda Views

If you are away from your computer, it can be very useful to have a printed version of some
agenda views to carry around. Org mode can export custom agenda views as plain text,
HTML14, Postscript, PDF15, and iCalendar files. If you want to do this only occasionally,
use the following command:

C-x C-w (org-agenda-write)
Write the agenda view to a file.

If you need to export certain agenda views frequently, you can associate any custom
agenda command with a list of output file names16. Here is an example that first defines
custom commands for the agenda and the global TODO list, together with a number of
files to which to export them. Then we define two block agenda commands and specify file
names for them as well. File names can be relative to the current working directory, or
absolute.

(setq org-agenda-custom-commands

'(("X" agenda "" nil ("agenda.html" "agenda.ps"))

("Y" alltodo "" nil ("todo.html" "todo.txt" "todo.ps"))

("h" "Agenda and Home-related tasks"

((agenda "")

(tags-todo "home")

(tags "garden"))

14 For HTML you need to install Hrvoje Nikšić’s ‘htmlize.el’ as an Emacs package from NonGNU ELPA
or from Hrvoje Nikšić’s repository.

15 To create PDF output, the Ghostscript ps2pdf utility must be installed on the system. Selecting a PDF
file also creates the postscript file.

16 If you want to store standard views like the weekly agenda or the global TODO list as well, you need
to define custom commands for them in order to be able to specify file names.

https://elpa.nongnu.org/
https://github.com/hniksic/emacs-htmlize

Chapter 11: Agenda Views 138

nil

("~/views/home.html"))

("o" "Agenda and Office-related tasks"

((agenda)

(tags-todo "work")

(tags "office"))

nil

("~/views/office.ps" "~/calendars/office.ics"))))

The extension of the file name determines the type of export. If it is ‘.html’, Org mode
uses the htmlize package to convert the buffer to HTML and save it to this file name. If
the extension is ‘.ps’, ps-print-buffer-with-faces is used to produce Postscript output.
If the extension is ‘.ics’, iCalendar export is run export over all files that were used to
construct the agenda, and limit the export to entries listed in the agenda. Any other
extension produces a plain ASCII file.

The export files are not created when you use one of those commands interactively
because this might use too much overhead. Instead, there is a special command to produce
all specified files in one step:

e (org-store-agenda-views)
Export all agenda views that have export file names associated with them.

You can use the options section of the custom agenda commands to also set options for
the export commands. For example:

(setq org-agenda-custom-commands

'(("X" agenda ""

((ps-number-of-columns 2)

(ps-landscape-mode t)

(org-agenda-prefix-format " [] ")

(org-agenda-with-colors nil)

(org-agenda-remove-tags t))

("theagenda.ps"))))

This command sets two options for the Postscript exporter, to make it print in two columns
in landscape format—the resulting page can be cut in two and then used in a paper agenda.
The remaining settings modify the agenda prefix to omit category and scheduling infor-
mation, and instead include a checkbox to check off items. We also remove the tags to
make the lines compact, and we do not want to use colors for the black-and-white printer.
Settings specified in org-agenda-exporter-settings also apply, e.g.,

(setq org-agenda-exporter-settings

'((ps-number-of-columns 2)

(ps-landscape-mode t)

(org-agenda-add-entry-text-maxlines 5)

(htmlize-output-type 'css)))

but the settings in org-agenda-custom-commands take precedence.

From the command line you may also use:

emacs -eval (org-batch-store-agenda-views) -kill

Chapter 11: Agenda Views 139

or, if you need to modify some parameters17

emacs -eval '(org-batch-store-agenda-views \

org-agenda-span (quote month) \

org-agenda-start-day "2007-11-01" \

org-agenda-include-diary nil \

org-agenda-files (quote ("~/org/project.org")))' \

-kill

which creates the agenda views restricted to the file ‘~/org/project.org’, without diary
entries and with a 30-day extent.

You can also extract agenda information in a way that allows further processing by
other programs. See Section A.10 [Extracting Agenda Information], page 287, for more
information.

11.8 Using Column View in the Agenda

Column view (see Section 7.5 [Column View], page 72) is normally used to view and edit
properties embedded in the hierarchical structure of an Org file. It can be quite useful to
use column view also from the agenda, where entries are collected by certain criteria.

C-c C-x C-c (org-agenda-columns)
Turn on column view in the agenda.

To understand how to use this properly, it is important to realize that the entries in the
agenda are no longer in their proper outline environment. This causes the following issues:

1. Org needs to make a decision which columns format to use. Since the entries in the
agenda are collected from different files, and different files may have different columns
formats, this is a non-trivial problem. Org first checks if org-overriding-columns-
format is currently set, and if so, takes the format from there. You should set this
variable only in the local settings section of a custom agenda command (see Section 11.6
[Custom Agenda Views], page 134) to make it valid for that specific agenda view. If
no such binding exists, it checks, in sequence, org-columns-default-format-for-
agenda, the format associated with the first item in the agenda (through a property or
a ‘#+COLUMNS’ setting in that buffer) and finally org-columns-default-format.

2. If any of the columns has a summary type defined (see Section 7.5.1.2 [Column at-
tributes], page 72), turning on column view in the agenda visits all relevant agenda
files and make sure that the computations of this property are up-to-date. This is also
true for the special ‘CLOCKSUM’ property. Org then sums the values displayed in the
agenda. In the daily/weekly agenda, the sums cover a single day; in all other views
they cover the entire block.

It is important to realize that the agenda may show the same entry twice—for example
as scheduled and as a deadline—and it may show two entries from the same hierarchy
(for example a parent and its child). In these cases, the summation in the agenda leads
to incorrect results because some values count double.

3. When the column view in the agenda shows the ‘CLOCKSUM’ property, that is always
the entire clocked time for this item. So even in the daily/weekly agenda, the clocksum

17 Quoting depends on the system you use, please check the FAQ for examples.

Chapter 11: Agenda Views 140

listed in column view may originate from times outside the current view. This has
the advantage that you can compare these values with a column listing the planned
total effort for a task—one of the major applications for column view in the agenda. If
you want information about clocked time in the displayed period use clock table mode
(press R in the agenda).

4. When the column view in the agenda shows the ‘CLOCKSUM_T’ property, that is always
today’s clocked time for this item. So even in the weekly agenda, the clocksum listed in
column view only originates from today. This lets you compare the time you spent on
a task for today, with the time already spent—via ‘CLOCKSUM’—and with the planned
total effort for it.

Chapter 12: Markup for Rich Contents 141

12 Markup for Rich Contents

Org is primarily about organizing and searching through your plain-text notes. However, it
also provides a lightweight yet robust markup language for rich text formatting and more.
For instance, you may want to center or emphasize text. Or you may need to insert a
formula or image in your writing. Org offers syntax for all of this and more. Used in
conjunction with the export framework (see Chapter 13 [Exporting], page 152), you can
author beautiful documents in Org—like the fine manual you are currently reading.

12.1 Paragraphs

Paragraphs are separated by at least one empty line. If you need to enforce a line break
within a paragraph, use ‘\\’ at the end of a line.

To preserve the line breaks, indentation and blank lines in a region, but otherwise use
normal formatting, you can use this construct, which can also be used to format poetry.

#+BEGIN_VERSE

Great clouds overhead

Tiny black birds rise and fall

Snow covers Emacs

---AlexSchroeder

#+END_VERSE

When quoting a passage from another document, it is customary to format this as
a paragraph that is indented on both the left and the right margin. You can include
quotations in Org documents like this:

#+BEGIN_QUOTE

Everything should be made as simple as possible,

but not any simpler ---Albert Einstein

#+END_QUOTE

If you would like to center some text, do it like this:

#+BEGIN_CENTER

Everything should be made as simple as possible, \\

but not any simpler

#+END_CENTER

12.2 Emphasis and Monospace

You can make words ‘*bold*’, ‘/italic/’, ‘_underlined_’, ‘=verbatim=’ and ‘~code~’,
and, if you must, ‘+strike-through+’. Text in the code and verbatim string is not processed
for Org specific syntax; it is exported verbatim. Org provides a single command as entry
point for inserting the marker character.

C-c C-x C-f (org-emphasize)
Prompt for a marker character and insert or change an emphasis. If there is an
active region, change that region to a new emphasis. If there is no region, just
insert the marker characters and position the cursor between them.

Chapter 12: Markup for Rich Contents 142

To turn off fontification for marked up text, you can set org-fontify-emphasized-

text to nil. To narrow down the list of the fontified markup syntax, you can customize
org-emphasis-alist1.

To hide the emphasis markup characters in your buffers, set org-hide-emphasis-

markers to t.

Sometimes, when marked text also contains the marker character itself, the result may
be unsettling. For example,

/One may expect this whole sentence to be italicized, but the

following ~user/?variable~ contains =/= character, which effectively

stops emphasis there./

You can use zero width space to help Org sorting out the ambiguity. See Section 17.12
[Escape Character], page 266 for more details.

12.3 Subscripts and Superscripts

‘^’ and ‘_’ are used to indicate super- and subscripts. To increase the readability of ASCII
text, it is not necessary, but OK, to surround multi-character sub- and superscripts with
curly braces. For example

The radius of the sun is R_sun = 6.96 x 10^8 m. On the other hand,

the radius of Alpha Centauri is R_{Alpha Centauri} = 1.28 x R_{sun}.

If you write a text where the underscore is often used in a different context, Org’s
convention to always interpret these as subscripts can get in your way. Configure the
variable org-use-sub-superscripts and/or org-export-with-sub-superscripts to
change this convention. For example, when setting these variables to {}, ‘a_b’ is not
displayed/exported2 as a subscript, but ‘a_{b}’ is.

You can set both org-use-sub-superscripts org-export-with-sub-superscripts

in a file using the export option ‘^:’ (see Section 13.2 [Export Settings], page 154). For
example, ‘#+OPTIONS: ^:{}’ sets the two options to {} and limits super- and subscripts to
the curly bracket notation.

You can also toggle the visual display of super- and subscripts:

C-c C-x \ (org-toggle-pretty-entities)
This command formats sub- and superscripts in a WYSIWYM way.

Set both org-pretty-entities and org-pretty-entities-include-sub-

superscripts to t to start with super- and subscripts visually interpreted as specified by
the option org-use-sub-superscripts.

12.4 Special Symbols

You can use LATEX-like syntax to insert special symbols—named entities—like ‘\alpha’ to
indicate the Greek letter, or ‘\to’ to indicate an arrow. Completion for these symbols is
available, just type ‘\’ and maybe a few letters, and press M-TAB to see possible completions.

1 The markup will still be recognized. Just not highlighted visually in Emacs.
2 The underlying markup still remains a sub/superscript. Only the visual display and export behavior

changes.

Chapter 12: Markup for Rich Contents 143

If you need such a symbol inside a word, terminate it with a pair of curly brackets. For
example

Pro tip: Given a circle \Gamma of diameter d, the length of its

circumference is \pi{}d.

A large number of entities is provided, with names taken from both HTML and LATEX;
you can comfortably browse the complete list from a dedicated buffer using the command
org-entities-help. It is also possible to provide your own special symbols in the variable
org-entities-user.

During export, these symbols are transformed into the native format of the exporter
backend. Strings like ‘\alpha’ are exported as ‘α’ in the HTML output, and as
‘\(\alpha\)’ in the LATEX output. Similarly, ‘\nbsp’ becomes ‘ ’ in HTML and ‘~’
in LATEX.

If you would like to see entities displayed as UTF-8 characters, use the following com-
mand3:

C-c C-x \ (org-toggle-pretty-entities)
Toggle display of entities as UTF-8 characters. This does not change the buffer
content which remains plain ASCII, but it overlays the UTF-8 character for
display purposes only.

In addition to regular entities defined above, Org exports in a special way4 the following
commonly used character combinations: ‘\-’ is treated as a shy hyphen, ‘--’ and ‘---’ are
converted into dashes, and ‘...’ becomes a compact set of dots.

12.5 Embedded LATEX

Plain ASCII is normally sufficient for almost all note-taking. Exceptions include scientific
notes, which often require mathematical symbols and the occasional formula. LATEX

5 is
widely used to typeset scientific documents. Org mode supports embedding LATEX code
into its files, because many academics are used to writing and reading LATEX source code,
and because it can be readily processed to produce pretty output for a number of export
backends.

12.5.1 LATEX fragments

Org mode can contain LATEX math fragments, and it supports ways to process these for
several export backends. When exporting to LATEX, the code is left as it is. When exporting
to HTML, Org can use either MathJax (see Section 13.9.11 [Math formatting in HTML
export], page 171) or transcode the math into images (see Section 12.5.2 [Previewing LATEX
fragments], page 144).

LATEX fragments do not need any special marking at all. The following snippets are
identified as LATEX source code:

3 You can turn this on by default by setting the variable org-pretty-entities, or on a per-file basis
with the ‘STARTUP’ option ‘entitiespretty’.

4 This behavior can be disabled with ‘-’ export setting (see Section 13.2 [Export Settings], page 154).
5 LATEX is a macro system based on Donald E. Knuth’s TEX system. Many of the features described here

as “LATEX” are really from TEX, but for simplicity I am blurring this distinction.

https://www.mathjax.org

Chapter 12: Markup for Rich Contents 144

• Environments of any kind6. The only requirement is that the ‘\begin’ statement
appears on a new line, preceded by only whitespace.

• Text within the usual LATEX math delimiters. Prefer ‘\(...\)’ for inline fragments.
The ‘$...$’ alternative has some restrictions and may be a source of confusion. To
avoid conflicts with currency specifications, single ‘$’ characters are only recognized
as math delimiters if the enclosed text contains at most two line breaks, is directly
attached to the ‘$’ characters with no whitespace in between, and if the closing ‘$’ is
followed by whitespace or punctuation (but not a dash).

Sometimes, it may be necessary to have a literal dollar symbol even when it is recognized
as LATEX math delimiter. Org provides ‘\dollar’ and ‘\USD’ entities (see Section 12.4
[Special Symbols], page 142) that are rendered as ‘$’ for such scenarios. Also, see
Section 17.12 [Escape Character], page 266.

For example:

\begin{equation} % arbitrary environments,

x=\sqrt{b} % even tables, figures, etc

\end{equation}

If $a^2=b$ and \(b=2 \), then the solution must be

either $$ a=+\sqrt{2} $$ or \[a=-\sqrt{2} \].

LATEX processing can be configured with the variable org-export-with-latex. The
default setting is t which means MathJax for HTML, and no processing for ASCII and
LATEX backends. You can also set this variable on a per-file basis using one of these lines:

‘#+OPTIONS: tex:t’ Do the right thing automatically (MathJax)
‘#+OPTIONS: tex:nil’ Do not process LATEX fragments at all
‘#+OPTIONS: tex:verbatim’ Verbatim export, for jsMath or so

12.5.2 Previewing LATEX fragments

If you have a working LATEX installation and ‘dvipng’, ‘dvisvgm’ or ‘convert’ installed7,
LATEX fragments can be processed to produce images of the typeset expressions to be used
for inclusion while exporting to HTML (see Section 12.5.1 [LATEX fragments], page 143), or
for inline previewing within Org mode.

You can customize the variables org-format-latex-options and org-format-latex-

header to influence some aspects of the preview. In particular, the :scale (and for HTML
export, :html-scale) property of the former can be used to adjust the size of the preview
images.

C-c C-x C-l (org-latex-preview)
Produce a preview image of the LATEX fragment at point and overlay it over
the source code. If there is no fragment at point, process all fragments in the
current entry—between two headlines.

6 When MathJax is used, only the environments recognized by MathJax are processed. When dvipng,
dvisvgm, or ImageMagick suite is used to create images, any LATEX environment is handled.

7 These are respectively available at https://sourceforge.net/projects/dvipng/, http://dvisvgm.
bplaced . net / and from the ImageMagick suite. Choose the converter by setting the variable
org-preview-latex-default-process accordingly.

https://sourceforge.net/projects/dvipng/
http://dvisvgm.bplaced.net/
http://dvisvgm.bplaced.net/

Chapter 12: Markup for Rich Contents 145

When called with a single prefix argument, clear all images in the current entry.
Two prefix arguments produce a preview image for all fragments in the buffer,
while three of them clear all the images in that buffer.

You can turn on the previewing of all LATEX fragments in a file with

#+STARTUP: latexpreview

To disable it, simply use

#+STARTUP: nolatexpreview

12.5.3 Using CDLATEX to enter math

CDLATEX mode is a minor mode that is normally used in combination with a major LATEX
mode like AUCTEX in order to speed-up insertion of environments and math templates.
Inside Org mode, you can make use of some of the features of CDLATEX mode. You need
to install ‘cdlatex.el’ and ‘texmathp.el’ (the latter comes also with AUCTEX) from
NonGNU ELPA with the Emacs packaging system or alternatively from https://staff.

fnwi.uva.nl/c.dominik/Tools/cdlatex/. Do not use CDLATEX mode itself under Org
mode, but use the special version Org CDLATEX minor mode that comes as part of Org.
Turn it on for the current buffer with M-x org-cdlatex-mode, or for all Org files with

(add-hook 'org-mode-hook #'turn-on-org-cdlatex)

When this mode is enabled, the following features are present (for more details see the
documentation of CDLATEX mode):

C-c {

Insert an environment template.

TAB

The TAB key expands the template if point is inside a LATEX fragment8. For
example, TAB expands ‘fr’ to ‘\frac{}{}’ and position point correctly inside
the first brace. Another TAB gets you into the second brace.

Even outside fragments, TAB expands environment abbreviations at the begin-
ning of a line. For example, if you write ‘equ’ at the beginning of a line and
press TAB, this abbreviation is expanded to an ‘equation’ environment. To get
a list of all abbreviations, type M-x cdlatex-command-help.

^, _

Pressing _ and ^ inside a LATEX fragment inserts these characters together with
a pair of braces. If you use TAB to move out of the braces, and if the braces
surround only a single character or macro, they are removed again (depending
on the variable cdlatex-simplify-sub-super-scripts).

`

Pressing the backquote followed by a character inserts math macros, also outside
LATEX fragments. If you wait more than 1.5 seconds after the backquote, a help
window pops up.

8 Org mode has a method to test if point is inside such a fragment, see the documentation of the function
org-inside-LaTeX-fragment-p.

https://elpa.nongnu.org/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Installation.html
https://staff.fnwi.uva.nl/c.dominik/Tools/cdlatex/
https://staff.fnwi.uva.nl/c.dominik/Tools/cdlatex/

Chapter 12: Markup for Rich Contents 146

'

Pressing the single-quote followed by another character modifies the LATEX sym-
bol before point with an accent or a font. If you wait more than 1.5 seconds
after the single-quote, a help window pops up. Character modification works
only inside LATEX fragments; outside the quote is normal.

12.6 Literal Examples

You can include literal examples that should not be subjected to markup. Such examples
are typeset in monospace, so this is well suited for source code and similar examples.

#+BEGIN_EXAMPLE

Some example from a text file.

#+END_EXAMPLE

There is one limitation, however. You must insert a comma right before lines starting
with either ‘*’, ‘,*’, ‘#+’ or ‘,#+’, as those may be interpreted as outlines nodes or some
other special syntax. Org transparently strips these additional commas whenever it accesses
the contents of the block.

#+BEGIN_EXAMPLE

,* I am no real headline

#+END_EXAMPLE

For simplicity when using small examples, you can also start the example lines with a
colon followed by a space. There may also be additional whitespace before the colon:

Here is an example

: Some example from a text file.

If the example is source code from a programming language, or any other text that can
be marked up by Font Lock in Emacs, you can ask for the example to look like the fontified
Emacs buffer9. This is done with the code block, where you also need to specify the name
of the major mode that should be used to fontify the example10, see Section 17.2 [Structure
Templates], page 258 for shortcuts to easily insert code blocks.

#+BEGIN_SRC emacs-lisp

(defun org-xor (a b)

"Exclusive or."

(if a (not b) b))

#+END_SRC

Both in ‘example’ and in ‘src’ snippets, you can add a ‘-n’ switch to the ‘#+BEGIN’ line11,
to get the lines of the example numbered. The ‘-n’ takes an optional numeric argument
specifying the starting line number of the block. If you use a ‘+n’ switch, the numbering
from the previous numbered snippet is continued in the current one. The ‘+n’ switch can

9 This works automatically for the HTML backend (it requires version 1.34 of the ‘htmlize.el’ package,
which you need to install). Fontified code chunks in LATEX can be achieved using either the listings LATEX
package, minted LATEX package, or by using engrave-faces. Refer to org-latex-src-block-backend for
details.

10 Source code in code blocks may also be evaluated either interactively or on export. See Chapter 16
[Working with Source Code], page 228 for more information on evaluating code blocks.

11 In the ‘src’ snippets, switches must be placed right after the language name and before the Section 16.2
[header arguments], page 229

https://www.ctan.org/pkg/listings
https://www.ctan.org/pkg/minted
https://elpa.gnu.org/packages/engrave-faces.html

Chapter 12: Markup for Rich Contents 147

also take a numeric argument. This adds the value of the argument to the last line of the
previous block to determine the starting line number.

#+BEGIN_SRC emacs-lisp -n 20

;; This exports with line number 20.

(message "This is line 21")

#+END_SRC

#+BEGIN_SRC emacs-lisp +n 10

;; This is listed as line 31.

(message "This is line 32")

#+END_SRC

In literal examples, Org interprets strings like ‘(ref:name)’ as labels, and use them
as targets for special hyperlinks like ‘[[(name)]]’—i.e., the reference name enclosed in
single parentheses. In HTML, hovering the mouse over such a link remote-highlights the
corresponding code line12, which is kind of cool.

You can also add a ‘-r’ switch which removes the labels from the source code13. With
the ‘-n’ switch, links to these references are labeled by the line numbers from the code
listing. Otherwise, links use the labels with no parentheses. Here is an example:

#+BEGIN_SRC emacs-lisp -n -r

(save-excursion (ref:sc)

(goto-char (point-min)) (ref:jump)

#+END_SRC

In line [[(sc)]] we remember the current position. [[(jump)][Line (jump)]]

jumps to point-min.

Source code and examples may be indented in order to align nicely with the surrounding
text, and in particular with plain list structure (see Section 2.6 [Plain Lists], page 13). By
default, Org only retains the relative indentation between lines, e.g., when exporting the
contents of the block. However, you can use the ‘-i’ switch to also preserve the global
indentation, if it does matter. See Section 16.10 [Editing Source Code], page 251.

If the syntax for the label format conflicts with the language syntax, use a ‘-l’ switch
to change the format, for example

#+BEGIN_SRC pascal -n -r -l "((%s))"

See also the variable org-coderef-label-format.

HTML export also allows examples to be published as text areas (see Section 13.9.12
[Text areas in HTML export], page 171).

Because the ‘#+BEGIN’ . . . ‘#+END’ patterns need to be added so often, a shortcut is
provided (see Section 17.2 [Structure Templates], page 258).

C-c ' (org-edit-special)
Edit the source code example at point in its native mode. This works by
switching to a temporary buffer with the source code. You need to exit by

12 This requires some JavaScript which is not automatically included in the HTML output: you have to
customize the variable ‘org-html-head-include-scripts’ to t to have it included (it is nil by default).

13 Adding ‘-k’ to ‘-n -r’ keeps the labels in the source code while using line numbers for the links, which
might be useful to explain those in an Org mode example code.

Chapter 12: Markup for Rich Contents 148

pressing C-c ' again. The edited version then replaces the old version in the
Org buffer. Fixed-width regions—where each line starts with a colon followed
by a space—are edited using Artist mode14 to allow creating ASCII drawings
easily. Using this command in an empty line creates a new fixed-width region.

Calling org-store-link (see Section 4.5 [Handling Links], page 43) while editing a
source code example in a temporary buffer created with C-c ' prompts for a label. Make
sure that it is unique in the current buffer, and insert it with the proper formatting like
‘(ref:label)’ at the end of the current line. Then the label is stored as a link ‘(label)’,
for retrieval with C-c C-l.

12.7 Images and link previews

Org mode can display previews of Chapter 4 [hyperlinks], page 39 inside Org buffers. By
default, only image links15 can be previewed inline, where the images are displayed in place
of the link path.

You can customize the previews as described in the Section A.4 [Adding Hyperlink
preview], page 280 section. Link previews do not have to display images – any kind of
Section “Overlay Properties” in elisp can be used.

You can preview the supported link types in the whole buffer, in the current section,
active region or at point with the following commands:

C-c C-x C-v (org-link-preview)
Create inline previews for external links in the active region, the link at point
or in the current section. With a prefix argument, clear link previews at point
or in the current entry. With a double prefix argument, preview all links in the
buffer. With triple prefix argument, hide previews for all links in the buffer.

By default, only links without descriptions are previewed. You can force dis-
playing previews for all supported links (including links with descriptions) using
a numeric argument of 1. This will toggle all previews in the active region, the
link at point or the current section. A numeric prefix argument of 11 will toggle
previews in the whole buffer instead.

Org mode can display link previews automatically when opening buffers.
Either customize org-startup-with-link-previews or use the ‘#+STARTUP:
linkpreviews’ keyword to enable previews for that specific buffer when
opening it. ‘#+STARTUP: nolinkpreviews’ will disable previews on startup in
the buffer.

C-c C-x C-M-v (org-link-preview-refresh)
Assure inline display of external link previews in the whole buffer and refresh
them.

(org-link-preview-region)
Create inline previews for external links in the active region, or the buffer. With
a prefix argument, also preview links with a text description part.

14 You may select a different mode with the variable org-edit-fixed-width-region-mode.
15 Image links are ‘file:’ and ‘attachment:’ links to existing image files; Emacs should be able to display

the linked images (see image-types variable)

Chapter 12: Markup for Rich Contents 149

(org-link-preview-clear)
Clear external link previews in the active region, or the buffer.

Link previews can also be displayed when cycling the folding state. When the custom
option org-cycle-link-previews-display is set, supported link types under the subtree
(including images) will be displayed automatically.

12.7.1 Images

An image is a link to an image file16 that does not have a description part, for example

./img/cat.jpg

If you wish to define a caption for the image (see Section 12.8 [Captions], page 150) and
maybe a label for internal cross-references (see Section 4.2 [Internal Links], page 40), make
sure that the link is on a line by itself and precede it with ‘CAPTION’ and ‘NAME’ keywords
as follows:

#+CAPTION: This is the caption for the next figure link (or table)

#+NAME: fig:SED-HR4049

[[./img/a.jpg]]

When Section 12.7 [link previews], page 148 are displayed as images, the image size and
alignment can be further customized.

By default, Org mode displays inline images according to their actual width, but no
wider than fill-column characters.

You can customize the displayed image width using org-image-actual-width variable
(globally) or ‘ORG-IMAGE-ACTUAL-WIDTH’ property (subtree-level)17. Their value can be the
following:

• (default) Non-nil, use the actual width of images when inlining them. If the actual
width is too wide, limit it according to org-image-max-width.

• When set to a number, use ImageMagick (when available) to set the image’s width to
this value.

• When set to a number in a list, try to get the width from any ‘#+ATTR.*’ keyword if it
matches a width specification like:

#+ATTR_HTML: :width 300px

and fall back on that number if none is found.

• When set to nil, try to get the width from an ‘#+ATTR.*’ keyword and fall back on
the original width or org-image-max-width if none is found.

org-image-max-width limits the maximum displayed image width, but only when the
image width is not set explicitly. Possible maximum width can be set to:

• (default) fill-column, limit width to fill-column number of characters.

• window, limit width to current window width.

• integer number, limit width to that specified number of pixels.

• nil, do not limit the width.

16 What Emacs considers to be an image depends on image-file-name-extensions and image-file-

name-regexps.
17 The width can be customized in Emacs >= 24.1, built with ImageMagick support.

Chapter 12: Markup for Rich Contents 150

Org mode can left-align, center or right-align the display of inline images. This setting
is controlled (globally) by org-image-align. Only standalone images are affected, corre-
sponding to links with no surrounding text in their paragraph except for whitespace. Its
value can be the following:

• (default) The symbol left, which inserts the image where the link appears in the
buffer.

• The symbol center, which will preview links centered in the Emacs window.

• The symbol right, which will preview links right-aligned in the Emacs window.

Inline image alignment can be specified for each link using the ‘#+ATTR.*’ keyword if it
matches an alignment specification like:

#+ATTR_HTML: :align center

Org will use the alignment specification from any ‘#+ATTR.*’ keyword, such as
‘#+ATTR_HTML’ or ‘#+ATTR_LATEX’, but ‘#+ATTR_ORG’ (if present) will override the others.
For instance, this link

#+ATTR_HTML: :align right

#+ATTR_ORG: :align center

[[/path/to/image/file.png]]

will be displayed centered in Emacs but exported right-aligned to HTML.

When ‘#+ATTR_ORG’ is not set, inline image alignment is also read from the ‘:center’
attribute supported by some export backends (like HTML, LATEX and Beamer.)

12.8 Captions

You can assign a caption to a specific part of a document by inserting a ‘CAPTION’ keyword
immediately before it:

#+CAPTION: This is the caption for the next table (or link)

| ... | ... |

|-----+-----|

Optionally, the caption can take the form:

#+CAPTION[Short caption]: Longer caption.

Even though images and tables are prominent examples of captioned structures, the
same caption mechanism can apply to many others—e.g., LATEX equations, source code
blocks. Depending on the export backend, those may or may not be handled.

12.9 Horizontal Rules

A line consisting of only dashes, and at least 5 of them, is exported as a horizontal line.

12.10 Creating Footnotes

A footnote is started by a footnote marker in square brackets in column 0, no indentation
allowed. It ends at the next footnote definition, headline, or after two consecutive empty
lines. The footnote reference is simply the marker in square brackets, inside text. Markers
always start with ‘fn:’. For example:

Chapter 12: Markup for Rich Contents 151

The Org website[fn:1] now looks a lot better than it used to.

...

[fn:50] The link is: https://orgmode.org

Org mode extends the number-based syntax to named footnotes and optional inline
definition. Here are the valid references:

‘[fn:NAME]’
A named footnote reference, where NAME is a unique label word, or, for sim-
plicity of automatic creation, a number.

‘[fn:: This is the inline definition of this footnote]’
An anonymous footnote where the definition is given directly at the reference
point.

‘[fn:NAME: a definition]’
An inline definition of a footnote, which also specifies a name for the note. Since
Org allows multiple references to the same note, you can then use ‘[fn:NAME]’
to create additional references.

Footnote labels can be created automatically, or you can create names yourself. This is
handled by the variable org-footnote-auto-label and its corresponding ‘STARTUP’ key-
words. See the docstring of that variable for details.

The following command handles footnotes:

C-c C-x f The footnote action command.

When point is on a footnote reference, jump to the definition. When it is at a
definition, jump to the—first—reference.

Otherwise, create a new footnote. Depending on the variable org-footnote-

define-inline18, the definition is placed right into the text as part of the refer-
ence, or separately into the location determined by the variable org-footnote-
section.

When this command is called with a prefix argument, a menu of additional
options is offered:

s Sort the footnote definitions by reference sequence.
r Renumber the simple ‘fn:N’ footnotes.
S Short for first r, then s action.
n Rename all footnotes into a ‘fn:1’ . . . ‘fn:n’ sequence.
d Delete the footnote at point, including definition and references.

Depending on the variable org-footnote-auto-adjust19, renumbering and
sorting footnotes can be automatic after each insertion or deletion.

C-c C-c If point is on a footnote reference, jump to the definition. If it is at the definition,
jump back to the reference. When called at a footnote location with a prefix
argument, offer the same menu as C-c C-x f.

C-c C-o or mouse-1/2
Footnote labels are also links to the corresponding definition or reference, and
you can use the usual commands to follow these links.

18 The corresponding in-buffer setting is: ‘#+STARTUP: fninline’ or ‘#+STARTUP: nofninline’.
19 The corresponding in-buffer options are ‘#+STARTUP: fnadjust’ and ‘#+STARTUP: nofnadjust’.

Chapter 13: Exporting 152

13 Exporting

At some point you might want to print your notes, publish them on the web, or share them
with people not using Org. Org can convert and export documents to a variety of other
formats while retaining as much structure (see Chapter 2 [Document Structure], page 7)
and markup (see Chapter 12 [Markup for Rich Contents], page 141) as possible.

The libraries responsible for translating Org files to other formats are called backends.
Org ships with support for the following backends:

• ascii (ASCII format)

• beamer (LATEX Beamer format)

• html (HTML format)

• icalendar (iCalendar format)

• latex (LATEX format)

• md (Markdown format)

• odt (OpenDocument Text format)

• org (Org format)

• texinfo (Texinfo format)

• man (Man page format)

Users can install libraries for additional formats from the Emacs packaging system. For
easy discovery, these packages have a common naming scheme: ox-NAME, where NAME is
a format. For example, ox-koma-letter for koma-letter backend. More libraries can be
found in the ‘org-contrib’ repository (see Section 1.2 [Installation], page 2).

Org only loads backends for the following formats by default: ASCII, HTML, iCalendar,
LATEX, and ODT. Additional backends can be loaded in either of two ways: by configuring
the org-export-backends variable, or by requiring libraries in the Emacs init file. For
example, to load the Markdown backend, add this to your Emacs config:

(require 'ox-md)

13.1 The Export Dispatcher

The export dispatcher is the main interface for Org’s exports. A hierarchical menu presents
the currently configured export formats. Options are shown as easy toggle switches on the
same screen.

Org also has a minimal prompt interface for the export dispatcher. When the vari-
able org-export-dispatch-use-expert-ui is set to a non-nil value, Org prompts in the
minibuffer. To switch back to the hierarchical menu, press ?.

C-c C-e (org-export-dispatch)
Invokes the export dispatcher interface. The options show default settings. The
C-u prefix argument preserves options from the previous export, including any
subtree selections.

Org exports the entire buffer by default. If the Org buffer has an active region, then
Org exports just that region.

Within the dispatcher interface, the following key combinations can further alter what
is exported, and how.

Chapter 13: Exporting 153

C-a

Toggle asynchronous export. Asynchronous export uses an external Emacs
process with a specially configured initialization file to complete the exporting
process in the background, without tying-up Emacs. This is particularly useful
when exporting long documents.

Output from an asynchronous export is saved on the export stack. To view this
stack, call the export dispatcher with a double C-u prefix argument. If already
in the export dispatcher menu, & displays the stack.

You can make asynchronous export the default by setting org-export-in-

background.

You can set the initialization file used by the background process by setting
org-export-async-init-file.

C-b

Toggle body-only export. Useful for excluding headers and footers in the export.
Affects only those backend formats that have sections like ‘<head>...</head>’
in HTML.

To make body-only export the default, customize the variable org-export-

body-only.

C-f

Toggle force-publishing export. Publish functions normally only publish
changed files (see [BROKEN LINK: **Triggering Publication]). Forced
publishing causes files to be published even if their timestamps do not indicate
the file has been changed.

To make forced publishing the default, customize the variable org-export-

force-publishing. (This is similar to org-publish-use-timestamps-flag,
but only affects the export dispatcher.)

C-s

Toggle subtree export. When turned on, Org exports only the subtree starting
from point position at the time the export dispatcher was invoked. Org uses
the top heading of this subtree as the document’s title. If point is not on a
heading, Org uses the nearest enclosing header. If point is in the document
preamble, Org signals an error and aborts export.

To make subtree export the default, customize the variable org-export-

initial-scope.

C-v

Toggle visible-only export. This is useful for exporting only certain parts of
an Org document by adjusting the visibility of particular headings. See also
Section 2.5 [Sparse Trees], page 12.

To make visible-only export the default, customize the variable org-export-

visible-only.

Chapter 13: Exporting 154

13.2 Export Settings

Export options can be set: globally with variables; for an individual file by making variables
buffer-local with in-buffer settings (see Section 17.8 [In-buffer Settings], page 262); by setting
individual keywords or specifying them in compact form with the ‘OPTIONS’ keyword; or for
a tree by setting properties (see Chapter 7 [Properties and Columns], page 68). Options set
at a specific level override options set at a more general level.

In-buffer settings may appear anywhere in the file, either directly or indirectly through a
file included using ‘#+SETUPFILE: filename or URL’ syntax. Option keyword sets tailored
to a particular backend can be inserted from the export dispatcher (see Section 13.1 [The
Export Dispatcher], page 152) using the ‘Insert template’ command by pressing #. To
insert keywords individually, a good way to make sure the keyword is correct is to type ‘#+’
and then to use M-TAB1 for completion.

The export keywords available for every backend, and their equivalent global variables,
include:

‘AUTHOR’ The document author (user-full-name).

‘CREATOR’ Entity responsible for output generation (org-export-creator-string).

‘DATE’ A date or a timestamp2.

‘EMAIL’ The email address (user-mail-address).

‘LANGUAGE’
Language to use for translating certain strings (org-export-default-
language). With ‘#+LANGUAGE: fr’, for example, Org translates ‘Table of

contents’ to the French ‘Table des matières’3.

‘SELECT_TAGS’
List of tags that will, if present, be selected for export. The default value is
org-export-select-tags ‘("export")’. When a tree is tagged with ‘export’,
Org selects that tree and its subtrees for export, ignoring all the other sections
that do not possess the ‘export’ tag.

When selectively exporting files with ‘export’ tags set, Org does not export
any text that appears before the first headline.

Note that a file without the ‘export’ tags will export all its sections.

To select non-default tags for export, customize org-export-select-tags

(globally) or add ‘#+SELECT_TAGS: tag1 tag2’ to the document.

‘EXCLUDE_TAGS’
List of tags that will be excluded from export. The default value is org-export-
exclude-tags ‘("noexport")’. When a tree is tagged with ‘noexport’, Org
excludes that tree and its subtrees from export.

Entries tagged with ‘noexport’ are unconditionally excluded from the export,
even if they have an ‘export’ tag. Even if a subtree is not exported, Org
executes any code blocks contained there.

1 Many desktops intercept M-TAB to switch windows. Use C-M-i or ESC TAB instead.
2 The variable org-export-date-timestamp-format defines how this timestamp is exported.
3 For export to LATEX format—or LATEX-related formats such as Beamer—, the ‘org-latex-package-alist’

variable needs further configuration. See Section 13.10.2 [LATEX specific export settings], page 175.

Chapter 13: Exporting 155

To select non-default tags for the exclusion, customize org-export-exclude-

tags (globally) or add ‘#+EXCLUDE_TAGS: tag1 tag2’ to the document.

‘TITLE’ Org displays this title. For long titles, use multiple ‘#+TITLE’ lines.

‘EXPORT_FILE_NAME’
The name of the output file to be generated. Otherwise, Org generates the file
name based on the buffer name and the extension based on the backend format.

The ‘OPTIONS’ keyword is a compact form. To configure multiple options, use several
‘OPTIONS’ lines. ‘OPTIONS’ recognizes the following arguments.

' Toggle smart quotes (org-export-with-smart-quotes). Depending on the
language used, when activated, Org treats pairs of double quotes as primary
quotes, pairs of single quotes as secondary quotes, and single quote marks as
apostrophes.

* Toggle emphasized text (org-export-with-emphasize).

- Toggle conversion of special strings (org-export-with-special-strings).

: Toggle fixed-width sections (org-export-with-fixed-width).

< Toggle inclusion of time/date active/inactive stamps (org-export-with-
timestamps).

\n Toggles whether to preserve line breaks (org-export-preserve-breaks).

^ Toggle TEX-like syntax for sub- and superscripts. If you write ‘^:{}’, ‘a_{b}’
is interpreted, but the simple ‘a_b’ is left as it is (org-export-with-sub-
superscripts).

arch Configure how archived trees are exported. When set to headline, the export
process skips the contents and processes only the headlines (org-export-with-
archived-trees).

author Toggle inclusion of author name into exported file (org-export-with-author).

expand-links

Toggle expansion of environment variables in file paths (org-export-expand-
links).

broken-links

Toggles if Org should continue exporting upon finding a broken internal
link. When set to mark, Org clearly marks the problem link in the output
(org-export-with-broken-links).

c Toggle inclusion of ‘CLOCK’ keywords (org-export-with-clocks).

creator Toggle inclusion of creator information in the exported file (org-export-with-
creator).

d Toggles inclusion of drawers, or list of drawers to include, or list of drawers to
exclude (org-export-with-drawers).

date Toggle inclusion of a date into exported file (org-export-with-date).

e Toggle inclusion of entities (org-export-with-entities).

Chapter 13: Exporting 156

email Toggle inclusion of the author’s e-mail into exported file (org-export-with-
email).

f Toggle the inclusion of footnotes (org-export-with-footnotes).

H Set the number of headline levels for export (org-export-headline-levels).
Below that level, headlines are treated differently. In most backends, they
become list items.

inline Toggle inclusion of inlinetasks (org-export-with-inlinetasks).

num Toggle section-numbers (org-export-with-section-numbers). When set
to number N, Org numbers only those headlines at level N or above. Set
‘UNNUMBERED’ property to non-nil to disable numbering of heading and
subheadings entirely. Moreover, when the value is ‘notoc’ the headline, and
all its children, do not appear in the table of contents either (see Section 13.3
[Table of Contents], page 157).

p Toggle export of planning information (org-export-with-planning). “Plan-
ning information” comes from lines located right after the headline and contain
any combination of these cookies: ‘SCHEDULED’, ‘DEADLINE’, or ‘CLOSED’.

pri Toggle inclusion of priority cookies (org-export-with-priority).

prop Toggle inclusion of property drawers, or list the properties to include
(org-export-with-properties).

stat Toggle inclusion of statistics cookies (org-export-with-statistics-
cookies).

tags Toggle inclusion of tags, may also be not-in-toc (org-export-with-tags).

tasks Toggle inclusion of tasks (TODO items); or nil to remove all tasks; or todo to
remove done tasks; or list the keywords to keep (org-export-with-tasks).

tex nil does not export; t exports; verbatim keeps everything in verbatim
(org-export-with-latex).

timestamp

Toggle inclusion of the creation time in the exported file (org-export-
timestamp-file).

title Toggle inclusion of title (org-export-with-title).

toc Toggle inclusion of the table of contents, or set the level limit (org-export-
with-toc).

todo Toggle inclusion of TODO keywords into exported text (org-export-with-
todo-keywords).

| Toggle inclusion of tables (org-export-with-tables).

When exporting subtrees, special node properties can override the above keywords.
These properties have an ‘EXPORT_’ prefix. For example, ‘DATE’ becomes, ‘EXPORT_DATE’
when used for a specific subtree. Except for ‘SETUPFILE’, all other keywords listed above
have an ‘EXPORT_’ equivalent.

Chapter 13: Exporting 157

If org-export-allow-bind-keywords is non-nil, Emacs variables can become buffer-
local during export by using the ‘BIND’ keyword. Its syntax is ‘#+BIND: variable value’.
This is particularly useful for in-buffer settings that cannot be changed using keywords.

13.3 Table of Contents

The table of contents includes all headlines in the document. Its depth is therefore the same
as the headline levels in the file. If you need to use a different depth, or turn it off entirely,
set the org-export-with-toc variable accordingly. You can achieve the same on a per-file
basis, using the following ‘toc’ item in ‘OPTIONS’ keyword:

#+OPTIONS: toc:2 (only include two levels in TOC)

#+OPTIONS: toc:nil (no default TOC at all)

Org includes both numbered and unnumbered headlines in the table of contents4. If you
need to exclude an unnumbered headline, along with all its children, set the ‘UNNUMBERED’
property to ‘notoc’ value.

* Subtree not numbered, not in table of contents either

:PROPERTIES:

:UNNUMBERED: notoc

:END:

Org normally inserts the table of contents in front of the exported document. To move
the table of contents to a different location, first turn off the default with org-export-

with-toc variable or with ‘#+OPTIONS: toc:nil’. Then insert ‘#+TOC: headlines N’ at
the desired location(s).

#+OPTIONS: toc:nil

...

#+TOC: headlines 2

To adjust the table of contents depth for a specific section of the Org document, append
an additional ‘local’ parameter. This parameter becomes a relative depth for the current
level. The following example inserts a local table of contents, with direct children only.

* Section

#+TOC: headlines 1 local

Note that for this feature to work properly in LATEX export, the Org file requires the
inclusion of the titletoc package. Because of compatibility issues, titletoc has to be loaded
before hyperref. Customize the org-latex-default-packages-alist variable.

The following example inserts a table of contents that links to the children of the specified
target.

* Target

:PROPERTIES:

:CUSTOM_ID: TargetSection

:END:

** Heading A

** Heading B

4 At the moment, some export backends do not obey this specification. For example, LATEX export excludes
every unnumbered headline from the table of contents.

Chapter 13: Exporting 158

* Another section

#+TOC: headlines 1 :target #TargetSection

The ‘:target’ attribute is supported in HTML, Markdown, ODT, and ASCII export.

Use the ‘TOC’ keyword to generate list of tables—respectively, all listings—with captions.

#+TOC: listings

#+TOC: tables

Normally Org uses the headline for its entry in the table of contents. But with
‘ALT_TITLE’ property, a different entry can be specified for the table of contents.

13.4 Include Files

[During export], page 207, you can include the content of another file. For example, to
include your ‘.emacs’ file, you could use:

#+INCLUDE: "~/.emacs" src emacs-lisp

There are three positional arguments after the include keyword, they are:

1. The file name, this is the sole mandatory argument. Org neither checks for correctness
nor validates the content in any way.

2. The block name to wrap the file content in. When this is ‘example’, ‘export’, or ‘src’
the content is escaped by org-escape-code-in-string. Arbitrary block names may
be given, however block names starting with ‘:’ must be quoted, i.e. ‘":name"’.

3. The source code language to use for formatting the contents. This is relevant to both
‘export’ and ‘src’ block types.

If an included file is not specified as having any markup language, Org assumes it to be
in Org format and proceeds as usual with a few exceptions. Org makes the footnote labels
(see Section 12.10 [Creating Footnotes], page 150) in the included file local to that file. The
contents of the included file belong to the same structure—headline, item—containing the
‘INCLUDE’ keyword. In particular, headlines within the file become children of the current
section. That behavior can be changed by providing an additional keyword parameter,
‘:minlevel’. It shifts the headlines in the included file to become the lowest level. For
example, this syntax makes the included file a sibling of the current top-level headline:

#+INCLUDE: "~/my-book/chapter2.org" :minlevel 1

Inclusion of only portions of files are specified using ranges parameter with ‘:lines’
keyword. The line at the upper end of the range will not be included. The start and/or the
end of the range may be omitted to use the obvious defaults.

‘#+INCLUDE: "~/.emacs" :lines "5-10"’ Include lines 5 to 10, 10 excluded
‘#+INCLUDE: "~/.emacs" :lines "-10"’ Include lines 1 to 10, 10 excluded
‘#+INCLUDE: "~/.emacs" :lines "10-"’ Include lines from 10 to EOF

Inclusions may specify a file-link to extract an object matched by org-link-search5

(see Section 4.8 [Search Options], page 47). The ranges for ‘:lines’ keyword are relative
to the requested element. Therefore,

5 Note that org-link-search-must-match-exact-headline is locally bound to non-nil. Therefore,
org-link-search only matches headlines and named elements.

Chapter 13: Exporting 159

#+INCLUDE: "./paper.org::*conclusion" :lines "1-20"

includes the first 20 lines of the headline named ‘conclusion’.

To extract only the contents of the matched object, set ‘:only-contents’ property to
non-nil. This omits any planning lines or property drawers. For example, to include the
body of the heading with the custom ID ‘theory’, you can use

#+INCLUDE: "./paper.org::#theory" :only-contents t

The following command allows navigating to the included document:

C-c ' (org-edit-special)
Visit the included file at point.

13.5 Macro Replacement

Macros replace text snippets during export6. Macros are defined globally in org-export-

global-macros, or document-wise with the following syntax:

#+MACRO: name replacement text; $1, $2 are arguments

which can be referenced using ‘{{{name(arg1, arg2)}}}’7. For example

#+MACRO: poem Rose is $1, violet's $2. Life's ordered: Org assists you.

{{{poem(red,blue)}}}

becomes

Rose is red, violet's blue. Life's ordered: Org assists you.

As a special case, Org parses any replacement text starting with ‘(eval’ as an Emacs
Lisp expression and evaluates it accordingly. Within such templates, arguments become
strings. Thus, the following macro

#+MACRO: gnustamp (eval (concat "GNU/" (capitalize $1)))

turns ‘{{{gnustamp(linux)}}}’ into ‘GNU/Linux’ during export.

Org recognizes macro references in following Org markup areas: paragraphs, headlines,
verse blocks, tables cells and lists. Org also recognizes macro references in keywords, such
as ‘CAPTION’, ‘TITLE’, ‘AUTHOR’, ‘DATE’, and for some backend specific export options.

Org comes with following pre-defined macros:

‘{{{keyword(NAME)}}}’
‘{{{title}}}’
‘{{{author}}}’
‘{{{email}}}’

The ‘keyword’ macro collects all values from NAME keywords through-
out the buffer, separated with white space. ‘title’, ‘author’ and
‘email’ macros are shortcuts for, respectively, ‘{{{keyword(TITLE)}}}’,
‘{{{keyword(AUTHOR)}}}’ and ‘{{{keyword(EMAIL)}}}’.

6 The macro replacement can be disabled by setting org-export-replace-macros to nil (default is t).
7 Since commas separate the arguments, commas within arguments have to be escaped with the backslash

character. So only those backslash characters before a comma need escaping with another backslash
character.

Chapter 13: Exporting 160

‘{{{date}}}’
‘{{{date(FORMAT)}}}’

This macro refers to the ‘DATE’ keyword. FORMAT is an optional argument to
the ‘date’ macro that is used only if ‘DATE’ is a single timestamp. FORMAT
should be a format string understood by format-time-string.

‘{{{time(FORMAT)}}}’
‘{{{modification-time(FORMAT, VC)}}}’

These macros refer to the document’s date and time of export and date and time
of modification. FORMAT is a string understood by format-time-string. If
the second argument to the modification-time macro is non-nil, Org uses
‘vc.el’ to retrieve the document’s modification time from the version control
system. Otherwise, Org reads the file attributes.

‘{{{input-file}}}’
This macro refers to the filename of the exported file.

‘{{{property(PROPERTY-NAME)}}}’
‘{{{property(PROPERTY-NAME, SEARCH OPTION)}}}’

This macro returns the value of property PROPERTY-NAME in the current
entry. If SEARCH-OPTION (see Section 4.8 [Search Options], page 47) refers
to a remote entry, use it instead.

‘{{{n}}}’
‘{{{n(NAME)}}}’
‘{{{n(NAME, ACTION)}}}’

This macro implements custom counters by returning the number of times the
macro has been expanded so far while exporting the buffer. You can create more
than one counter using different NAME values. If ACTION is ‘-’, previous
value of the counter is held, i.e., the specified counter is not incremented. If the
value is a number, the specified counter is set to that value. If it is any other
non-empty string, the specified counter is reset to 1. You may leave NAME
empty to reset the default counter.

Moreover, inline source blocks (see Section 16.2 [Structure of Code Blocks], page 229)
use the special ‘results’ macro to mark their output. As such, you are advised against
re-defining it, unless you know what you are doing.

The surrounding brackets can be made invisible by setting org-hide-macro-markers to
a non-nil value.

Org expands macros at the very beginning of the export process.

13.6 Comment Lines

Lines starting with zero or more whitespace characters followed by one ‘#’ and a whitespace
are treated as comments and, as such, are not exported.

Likewise, regions surrounded by ‘#+BEGIN_COMMENT’ . . . ‘#+END_COMMENT’ are not ex-
ported.

Finally, a ‘COMMENT’ keyword at the beginning of an entry, but after any other keyword
or priority cookie, comments out the entire subtree. In this case, the subtree is not exported

Chapter 13: Exporting 161

and no code block within it is executed either8. The command below helps to change the
comment status of a headline.

C-c ; (org-toggle-comment)
Toggle the ‘COMMENT’ keyword at the beginning of an entry.

13.7 ASCII/Latin-1/UTF-8 export

ASCII export produces an output file containing only plain ASCII characters. This is the
simplest and most direct text output. It does not contain any Org markup. Latin-1 and
UTF-8 export use additional characters and symbols available in these encoding standards.
All three of these export formats offer the most basic of text output for maximum portability.

On export, Org fills and justifies text according to the text width set in org-ascii-

text-width.

Org exports links using a footnote-like style where the descriptive part is in the text and
the link is in a note before the next heading. See the variable org-ascii-links-to-notes
for details.

ASCII export commands

C-c C-e t a (org-ascii-export-to-ascii), C-c C-e t l, C-c C-e t u

Export as an ASCII file with a ‘.txt’ extension. For ‘myfile.org’, Org exports
to ‘myfile.txt’, overwriting without warning. For ‘myfile.txt’, Org exports
to ‘myfile.txt.txt’ in order to prevent data loss.

C-c C-e t A (org-ascii-export-to-ascii), C-c C-e t L, C-c C-e t U

Export to a temporary buffer. Does not create a file.

ASCII specific export settings

The ASCII export backend has one extra keyword for customizing ASCII output. Set-
ting this keyword works similar to the general options (see Section 13.2 [Export Settings],
page 154).

‘SUBTITLE’
The document subtitle. For long subtitles, use multiple ‘#+SUBTITLE’ lines in
the Org file. Org prints them on one continuous line, wrapping into multiple
lines if necessary.

Header and sectioning structure

Org converts the first three outline levels into headlines for ASCII export. The remaining
levels are turned into lists. To change this cut-off point where levels become lists, see
Section 13.2 [Export Settings], page 154.

Quoting ASCII text

To insert text within the Org file by the ASCII backend, use one the following constructs,
inline, keyword, or export block:

8 For a less drastic behavior, consider using a select tag (see Section 13.2 [Export Settings], page 154)
instead.

Chapter 13: Exporting 162

Inline text @@ascii:and additional text@@ within a paragraph.

#+ASCII: Some text

#+BEGIN_EXPORT ascii

Org exports text in this block only when using ASCII backend.

#+END_EXPORT

ASCII specific attributes

ASCII backend recognizes only one attribute, ‘:width’, which specifies the width of a hor-
izontal rule in number of characters. The keyword and syntax for specifying widths is:

#+ATTR_ASCII: :width 10

ASCII special blocks

Besides ‘#+BEGIN_CENTER’ blocks (see Section 12.1 [Paragraphs], page 141), ASCII backend
has these two left and right justification blocks:

#+BEGIN_JUSTIFYLEFT

It's just a jump to the left...

#+END_JUSTIFYLEFT

#+BEGIN_JUSTIFYRIGHT

...and then a step to the right.

#+END_JUSTIFYRIGHT

13.8 Beamer Export

Org uses Beamer export to convert an Org file tree structure into high-quality interactive
slides for presentations. Beamer is a LATEX document class for creating presentations in
PDF, HTML, and other popular display formats.

13.8.1 Beamer export commands

C-c C-e l b (org-beamer-export-to-latex)
Export as LATEX file with a ‘.tex’ extension. For ‘myfile.org’, Org exports to
‘myfile.tex’, overwriting without warning.

C-c C-e l B (org-beamer-export-as-latex)
Export to a temporary buffer. Does not create a file.

C-c C-e l P (org-beamer-export-to-pdf)
Export as LATEX file and then convert it to PDF format.

C-c C-e l O

Export as LATEX file, convert it to PDF format, and then open the PDF file.

13.8.2 Beamer specific export settings

Beamer export backend has several additional keywords for customizing Beamer output.
These keywords work similar to the general options settings (see Section 13.2 [Export Set-
tings], page 154).

Chapter 13: Exporting 163

‘BEAMER_THEME’
The Beamer layout theme (org-beamer-theme). Use square brackets for op-
tions. For example:

#+BEAMER_THEME: Rochester [height=20pt]

‘BEAMER_FONT_THEME’
The Beamer font theme.

‘BEAMER_INNER_THEME’
The Beamer inner theme.

‘BEAMER_OUTER_THEME’
The Beamer outer theme.

‘BEAMER_HEADER’
Arbitrary lines inserted in the preamble, just before the ‘hyperref’ settings.

‘DESCRIPTION’
The document description. For long descriptions, use multiple ‘DESCRIPTION’
keywords. By default, ‘hyperref’ inserts ‘DESCRIPTION’ as metadata. Use
org-latex-hyperref-template to configure document metadata. Use
org-latex-title-command to configure typesetting of description as part of
front matter.

‘KEYWORDS’
The keywords for defining the contents of the document. Use multiple
‘KEYWORDS’ lines if necessary. By default, ‘hyperref’ inserts ‘KEYWORDS’
as metadata. Use org-latex-hyperref-template to configure document
metadata. Use org-latex-title-command to configure typesetting of
keywords as part of front matter.

‘SUBTITLE’
Document’s subtitle. For typesetting, use org-beamer-subtitle-format

string. Use org-latex-hyperref-template to configure document metadata.
Use org-latex-title-command to configure typesetting of subtitle as part of
front matter.

13.8.3 Frames and Blocks in Beamer

Org transforms heading levels into Beamer’s sectioning elements, frames and blocks. Any
Org tree with a not-too-deep-level nesting should in principle be exportable as a Beamer
presentation.

• Org headlines become Beamer frames when the heading level in Org is equal to
org-beamer-frame-level or ‘H’ value in a ‘OPTIONS’ line (see Section 13.2 [Export
Settings], page 154).

Org overrides headlines to frames conversion for the current tree of an Org file if
it encounters the ‘BEAMER_ENV’ property set to ‘frame’ or ‘fullframe’. Org ignores
whatever org-beamer-frame-level happens to be for that headline level in the Org
tree. In Beamer terminology, a full frame is a frame without its title.

Chapter 13: Exporting 164

• Org exports a Beamer frame’s objects as block environments. Org can enforce
wrapping in special block types when ‘BEAMER_ENV’ property is set9. For
valid values see org-beamer-environments-default. To add more values, see
org-beamer-environments-extra.

• If ‘BEAMER_ENV’ is set to ‘appendix’, Org exports the entry as an appendix. When
set to ‘note’, Org exports the entry as a note within the frame or between frames,
depending on the entry’s heading level. When set to ‘noteNH’, Org exports the entry
as a note without its title. When set to ‘againframe’, Org exports the entry with
‘\againframe’ command, which makes setting the ‘BEAMER_REF’ property mandatory
because ‘\againframe’ needs frame to resume.

When ‘ignoreheading’ is set, Org export ignores the entry’s headline but not its
content. This is useful for inserting content between frames. It is also useful for
properly closing a ‘column’ environment.

If ‘BEAMER_SUBTITLE’ is set, org exports its value as the subtitle for the headline’s
frame. This property has no effect on headlines which are not exported as frames.

When ‘BEAMER_ACT’ is set for a headline, Org export translates that headline as an
overlay or action specification. When enclosed in square brackets, Org export makes the
overlay specification a default. Use ‘BEAMER_OPT’ to set any options applicable to the
current Beamer frame or block. The Beamer export backend wraps with appropriate
angular or square brackets. It also adds the ‘fragile’ option for any code that may
require a verbatim block.

To create a column on the Beamer slide, use the ‘BEAMER_COL’ property for its headline
in the Org file. Set the value of ‘BEAMER_COL’ to a decimal number representing the
fraction of the total text width. Beamer export uses this value to set the column’s
width and fills the column with the contents of the Org entry. If the Org entry has
no specific environment defined, Beamer export ignores the heading. If the Org en-
try has a defined environment, Beamer export uses the heading as title. Behind the
scenes, Beamer export automatically handles LATEX column separations for contigu-
ous headlines. To manually adjust them for any unique configurations needs, use the
‘BEAMER_ENV’ property.

13.8.4 Beamer specific syntax

Since Org’s Beamer export backend is an extension of the LATEX backend, it recognizes other
LATEX specific syntax—for example, ‘#+LATEX:’ or ‘#+ATTR_LATEX:’. See Section 13.10
[LATEX Export], page 174, for details.

Beamer export wraps the table of contents generated with ‘toc:t’ ‘OPTION’ keyword in
a ‘frame’ environment. Beamer export does not wrap the table of contents generated with
‘TOC’ keyword (see Section 13.3 [Table of Contents], page 157). Use square brackets for
specifying options.

#+TOC: headlines [currentsection]

Insert Beamer-specific code using the following constructs:

#+BEAMER: \pause

9 If ‘BEAMER_ENV’ is set, Org export adds ‘B_environment’ tag to make it visible. The tag serves as a visual
aid and has no semantic relevance.

Chapter 13: Exporting 165

#+BEGIN_EXPORT beamer

Only Beamer export backend exports this.

#+END_EXPORT

Text @@beamer:some code@@ within a paragraph.

Inline constructs, such as the last one above, are useful for adding overlay specifications
to objects with bold, item, link, radio-target and target types. Enclose the value in
angular brackets and place the specification at the beginning of the object as shown in this
example:

A *@@beamer:<2->@@useful* feature

Beamer export recognizes the ‘ATTR_BEAMER’ keyword with the following attributes from
Beamer configurations: ‘:environment’ for changing local Beamer environment, ‘:overlay’
for specifying Beamer overlays in angular or square brackets, and ‘:options’ for inserting
optional arguments.

#+ATTR_BEAMER: :environment nonindentlist

- item 1, not indented

- item 2, not indented

- item 3, not indented

#+ATTR_BEAMER: :overlay <+->

- item 1

- item 2

#+ATTR_BEAMER: :options [Lagrange]

Let G be a finite group, and let H be

a subgroup of G. Then the order of H divides the order of G.

13.8.5 Editing support

Org Beamer mode is a special minor mode for faster editing of Beamer documents.

#+STARTUP: beamer

C-c C-b (org-beamer-select-environment)
Org Beamer mode provides this key for quicker selections in Beamer normal
environments, and for selecting the ‘BEAMER_COL’ property.

13.8.6 A Beamer example

Here is an example of an Org document ready for Beamer export.

#+TITLE: Example Presentation

#+AUTHOR: Carsten Dominik

#+OPTIONS: H:2 toc:t num:t

#+LATEX_CLASS: beamer

#+LATEX_CLASS_OPTIONS: [presentation]

#+BEAMER_THEME: Madrid

#+COLUMNS: %45ITEM %10BEAMER_ENV(Env) %10BEAMER_ACT(Act) %4BEAMER_COL(Col)

* This is the first structural section

Chapter 13: Exporting 166

** Frame 1

*** Thanks to Eric Fraga :B_block:

:PROPERTIES:

:BEAMER_COL: 0.48

:BEAMER_ENV: block

:END:

for the first viable Beamer setup in Org

*** Thanks to everyone else :B_block:

:PROPERTIES:

:BEAMER_COL: 0.48

:BEAMER_ACT: <2->

:BEAMER_ENV: block

:END:

for contributing to the discussion

**** This will be formatted as a beamer note :B_note:

:PROPERTIES:

:BEAMER_env: note

:END:

** Frame 2 (where we will not use columns)

*** Request

Please test this stuff!

13.9 HTML Export

Org mode contains an HTML exporter with extensive HTML formatting compatible with
XHTML 1.0 strict standard.

13.9.1 HTML export commands

C-c C-e h h (org-html-export-to-html)
Export as HTML file with a ‘.html’ extension. For ‘myfile.org’, Org exports
to ‘myfile.html’, overwriting without warning. C-c C-e h o exports to HTML
and opens it in a web browser.

C-c C-e h H (org-html-export-as-html)
Exports to a temporary buffer. Does not create a file.

13.9.2 HTML specific export settings

HTML export has a number of keywords, similar to the general options settings described
in Section 13.2 [Export Settings], page 154.

‘DESCRIPTION’
This is the document’s description, which the HTML exporter inserts it as
an HTML meta tag in the HTML file. For long descriptions, use multiple
‘DESCRIPTION’ lines. The exporter takes care of wrapping the lines properly.

The exporter includes a number of other meta tags, which can be customized
by modifying org-html-meta-tags.

Chapter 13: Exporting 167

‘HTML_DOCTYPE’
Specify the document type, for example: HTML5 (org-html-doctype).

‘HTML_CONTAINER’
Specify the HTML container, such as ‘div’, for wrapping sections and elements
(org-html-container-element).

‘HTML_LINK_HOME’
The URL for home link (org-html-link-home).

‘HTML_LINK_UP’
The URL for the up link of exported HTML pages (org-html-link-up).

‘HTML_MATHJAX’
Options for MathJax (org-html-mathjax-options). MathJax is used to type-
set LATEX math in HTML documents. See Section 13.9.11 [Math formatting in
HTML export], page 171, for an example.

‘HTML_HEAD’
Arbitrary lines for appending to the HTML document’s head (org-html-head).

‘HTML_HEAD_EXTRA’
More arbitrary lines for appending to the HTML document’s head (org-html-
head-extra).

‘KEYWORDS’
Keywords to describe the document’s content. HTML exporter inserts these
keywords as HTML meta tags. For long keywords, use multiple ‘KEYWORDS’
lines.

‘LATEX_HEADER’
Arbitrary lines for appending to the preamble; HTML exporter appends when
transcoding LATEX fragments to images (see Section 13.9.11 [Math formatting
in HTML export], page 171).

‘SUBTITLE’
The document’s subtitle. HTML exporter formats subtitle if document type is
‘HTML5’ and the CSS has a ‘subtitle’ class.

Some of these keywords are explained in more detail in the following sections of the
manual.

13.9.3 HTML doctypes

Org can export to various (X)HTML flavors.

Set the org-html-doctype variable for different (X)HTML variants. Depending on the
variant, the HTML exporter adjusts the syntax of HTML conversion accordingly. Org
includes the following ready-made variants:

• "html4-strict"

• "html4-transitional"

• "html4-frameset"

• "xhtml-strict"

Chapter 13: Exporting 168

• "xhtml-transitional"

• "xhtml-frameset"

• "xhtml-11"

• "html5"

• "xhtml5"

See the variable org-html-doctype-alist for details. The default is "xhtml-strict".

Org’s HTML exporter does not by default enable new block elements introduced with
the HTML5 standard. To enable them, set org-html-html5-fancy to non-nil. Or use an
‘OPTIONS’ line in the file to set ‘html5-fancy’.

HTML5 documents can have arbitrary ‘#+BEGIN’ . . . ‘#+END’ blocks. For example:

#+BEGIN_aside

Lorem ipsum

#+END_aside

exports to:

<aside>

<p>Lorem ipsum</p>

</aside>

while this:

#+ATTR_HTML: :controls controls :width 350

#+BEGIN_video

#+HTML: <source src="movie.mp4" type="video/mp4">

#+HTML: <source src="movie.ogg" type="video/ogg">

Your browser does not support the video tag.

#+END_video

exports to:

<video controls="controls" width="350">

<source src="movie.mp4" type="video/mp4">

<source src="movie.ogg" type="video/ogg">

<p>Your browser does not support the video tag.</p>

</video>

When special blocks do not have a corresponding HTML5 element, the HTML ex-
porter reverts to standard translation (see org-html-html5-elements). For example,
‘#+BEGIN_lederhosen’ exports to <div class="lederhosen">.

Special blocks cannot have headlines. For the HTML exporter to wrap the headline and
its contents in <section> or <article> tags, set the ‘HTML_CONTAINER’ property for the
headline.

13.9.4 HTML preamble and postamble

The HTML exporter has delineations for preamble and postamble. The default value for
org-html-preamble is t, which makes the HTML exporter insert the preamble. See the
variable org-html-preamble-format for the format string.

Set org-html-preamble to a string to override the default format string. If set to a
function, the HTML exporter expects the function to return a string upon execution. The

Chapter 13: Exporting 169

HTML exporter inserts this string in the preamble. The HTML exporter does not insert a
preamble if org-html-preamble is set nil.

The above also applies to org-html-postamble and org-html-postamble-format. In
addition, org-html-postamble can be set to auto (its default value), which makes the
HTML exporter build a postamble from looking up author’s name, email address, creator’s
name, and date.

13.9.5 Exporting to minimal HTML

If you want to output a minimal HTML file, with no CSS, no JavaScript, no preamble or
postamble, here are the variable you would need to set:

(setq org-html-head ""

org-html-head-extra ""

org-html-head-include-default-style nil

org-html-head-include-scripts nil

org-html-preamble nil

org-html-postamble nil

org-html-use-infojs nil)

13.9.6 Quoting HTML tags

The HTML export backend transforms ‘<’ and ‘>’ to ‘<’ and ‘>’. To include raw
HTML code in the Org file, so the HTML export backend can insert that HTML code in
the output, use this inline syntax: ‘@@html:...@@’. For example:

@@html:@@bold text@@html:@@

For larger raw HTML code blocks, use these HTML export code blocks:

#+HTML: Literal HTML code for export

#+BEGIN_EXPORT html

All lines between these markers are exported literally

#+END_EXPORT

13.9.7 Headlines in HTML export

Headlines are exported to ‘<h1>’, ‘<h2>’, etc. Each headline gets the ‘id’ attribute from
‘CUSTOM_ID’ property, or a unique generated value, see Section 4.2 [Internal Links], page 40.

When org-html-self-link-headlines is set to a non-nil value, the text of the head-
lines is also wrapped in ‘<a>’ tags. These tags have a ‘href’ attribute making the headlines
link to themselves.

13.9.8 Links in HTML export

The HTML export backend transforms Org’s internal links (see Section 4.2 [Internal Links],
page 40) to equivalent HTML links in the output. The backend similarly handles Org’s
automatic links created by radio targets (see Section 4.3 [Radio Targets], page 41) similarly.
For Org links to external files, the backend transforms the links to relative paths.

For Org links to other ‘.org’ files, the backend automatically changes the file extension
to ‘.html’ and makes file paths relative. If the ‘.org’ files have an equivalent ‘.html’
version at the same location, then the converted links should work without any further

Chapter 13: Exporting 170

manual intervention. However, to disable this automatic path translation, set org-html-
link-org-files-as-html to nil. When disabled, the HTML export backend substitutes
the ID-based links in the HTML output. For more about linking files when publishing to a
directory, see Section 14.1.6 [Publishing links], page 219.

Org files can also have special directives to the HTML export backend. For example,
by using ‘#+ATTR_HTML’ lines to specify new format attributes to <a> or tags. This
example shows changing the link’s title and style:

#+ATTR_HTML: :title The Org mode website :style color:red;

[[https://orgmode.org]]

13.9.9 Tables in HTML export

The HTML export backend uses org-html-table-default-attributes when exporting
Org tables to HTML. By default, the exporter does not draw frames and cell borders. To
change for this for a table, use the following lines before the table in the Org file:

#+CAPTION: This is a table with lines around and between cells

#+ATTR_HTML: :border 2 :rules all :frame border

The HTML export backend preserves column groupings in Org tables (see Section 3.3
[Column Groups], page 23) when exporting to HTML.

Additional options for customizing tables for HTML export.

org-html-table-align-individual-fields

Non-nil attaches style attributes for alignment to each table field.

org-html-table-caption-above

Non-nil places caption string at the beginning of the table.

org-html-table-data-tags

Opening and ending tags for table data fields.

org-html-table-default-attributes

Default attributes and values for table tags.

org-html-table-header-tags

Opening and ending tags for table’s header fields.

org-html-table-row-tags

Opening and ending tags for table rows.

org-html-table-use-header-tags-for-first-column

Non-nil formats column one in tables with header tags.

13.9.10 Images in HTML export

The HTML export backend has features to convert Org image links to HTML inline images
and HTML clickable image links.

When the link in the Org file has no description, the HTML export backend by
default in-lines that image. For example: ‘[[file:myimg.jpg]]’ is in-lined, while
‘[[file:myimg.jpg][the image]]’ links to the text, ‘the image’. For more details, see
the variable org-html-inline-images.

Chapter 13: Exporting 171

On the other hand, if the description part of the Org link is itself another link, such as
‘file:’ or ‘http:’ URL pointing to an image, the HTML export backend in-lines this image
and links to the main image. This Org syntax enables the backend to link low-resolution
thumbnail to the high-resolution version of the image, as shown in this example:

[[file:highres.jpg][file:thumb.jpg]]

To change attributes of in-lined images, use ‘#+ATTR_HTML’ lines in the Org file. This
example shows realignment to right, and adds alt and title attributes in support of text
viewers and modern web accessibility standards.

#+CAPTION: A black cat stalking a spider

#+ATTR_HTML: :alt cat/spider image :title Action! :align right

[[./img/a.jpg]]

The HTML export backend copies the ‘http’ links from the Org file as-is.

13.9.11 Math formatting in HTML export

LATEX math snippets (see Section 12.5.1 [LATEX fragments], page 143) can be displayed in
two different ways on HTML pages. The default is to use the MathJax, which should
work out of the box with Org1011. Some MathJax display options can be configured via
org-html-mathjax-options, or in the buffer. For example, with the following settings,

#+HTML_MATHJAX: align: left indent: 5em tagside: left

equation labels are displayed on the left margin and equations are five ems from the left
margin.

See the docstring of org-html-mathjax-options for all supported variables. The Math-
Jax template can be configured via org-html-mathjax-template.

If you prefer, you can also request that LATEX fragments are processed into small images
that will be inserted into the browser page. Before the availability of MathJax, this was
the default method for Org files. This method requires that the dvipng program, dvisvgm
or ImageMagick suite is available on your system. You can still get this processing with

#+OPTIONS: tex:dvipng

#+OPTIONS: tex:dvisvgm

or

#+OPTIONS: tex:imagemagick

13.9.12 Text areas in HTML export

Before Org mode’s Babel, one popular approach to publishing code in HTML was by using
‘:textarea’. The advantage of this approach was that copying and pasting was built into
browsers with simple JavaScript commands. Even editing before pasting was made simple.

The HTML export backend can create such text areas. It requires an ‘#+ATTR_HTML’
line as shown in the example below with the ‘:textarea’ option. This must be followed
by either an example or a source code block. Other Org block types do not honor the
‘:textarea’ option.

10 By default, Org loads MathJax from jsDelivr, as recommended in Getting Started with MathJax
Components.

11 Please note that exported formulas are part of an HTML document, and that signs such as ‘<’, ‘>’, or
‘&’ have special meanings. See MathJax TEX and LATEX in HTML documents.

https://www.mathjax.org
https://www.jsdelivr.com/
https://docs.mathjax.org/en/latest/web/start.html
https://docs.mathjax.org/en/latest/web/start.html
https://docs.mathjax.org/en/latest/input/tex/html.html#tex-and-latex-in-html-documents

Chapter 13: Exporting 172

By default, the HTML export backend creates a text area 80 characters wide and height
just enough to fit the content. Override these defaults with ‘:width’ and ‘:height’ options
on the ‘#+ATTR_HTML’ line.

#+ATTR_HTML: :textarea t :width 40

#+BEGIN_EXAMPLE

(defun org-xor (a b)

"Exclusive or."

(if a (not b) b))

#+END_EXAMPLE

13.9.13 CSS support

You can modify the CSS style definitions for the exported file. The HTML exporter assigns
the following special CSS classes12 to appropriate parts of the document—your style spec-
ifications may change these, in addition to any of the standard classes like for headlines,
tables, etc.

p.author author information, including email
p.date publishing date
p.creator creator info, about org mode version
.title document title
.subtitle document subtitle
.todo TODO keywords, all not-done states
.done the DONE keywords, all states that count as done
.WAITING each TODO keyword also uses a class named after itself
.timestamp timestamp
.timestamp-kwd keyword associated with a timestamp, like ‘SCHEDULED’
.timestamp-wrapper span around keyword plus timestamp
.tag tag in a headline
._HOME each tag uses itself as a class, “@” replaced by “ ”
.target target for links
.linenr the line number in a code example
.code-highlighted for highlighting referenced code lines
div.outline-N div for outline level N (headline plus text)
div.outline-text-N extra div for text at outline level N
.section-number-N section number in headlines, different for each level
.figure-number label like “Figure 1:”
.table-number label like “Table 1:”
.listing-number label like “Listing 1:”
div.figure how to format an in-lined image
pre.src formatted source code
pre.example normal example
p.verse verse paragraph
div.footnotes footnote section headline
p.footnote footnote definition paragraph, containing a footnote
.footref a footnote reference number (always a <sup>)

12 If the classes on TODO keywords and tags lead to conflicts, use the variables org-html-todo-kwd-

class-prefix and org-html-tag-class-prefix to make them unique.

Chapter 13: Exporting 173

.footnum footnote number in footnote definition (always <sup>)

.org-svg default class for a linked ‘.svg’ image

The HTML export backend includes a compact default style in each exported HTML
file. To override the default style with another style, use these keywords in the Org file.
They will replace the global defaults the HTML exporter uses.

#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="style1.css" />

#+HTML_HEAD_EXTRA: <link rel="alternate stylesheet" type="text/css" href="style2.css" />

To just turn off the default style, customize org-html-head-include-default-style

variable, or use this option line in the Org file.

#+OPTIONS: html-style:nil

For longer style definitions, either use several ‘HTML_HEAD’ and ‘HTML_HEAD_EXTRA’ key-
words, or use <style> ... </style> blocks around them. Both of these approaches can
avoid referring to an external file.

In order to add styles to a subtree, use the ‘HTML_CONTAINER_CLASS’ property to assign
a class to the tree. In order to specify CSS styles for a particular headline, you can use the
ID specified in a ‘CUSTOM_ID’ property. You can also assign a specific class to a headline
with the ‘HTML_HEADLINE_CLASS’ property.

Never change the org-html-style-default constant. Instead, use other simpler ways
of customizing as described above.

13.9.14 JavaScript supported display of web pages

Sebastian Rose has written a JavaScript program especially designed to allow two different
ways of viewing HTML files created with Org. One is an Info-like mode where each section
is displayed separately and navigation can be done with the n and p keys, and some other
keys as well, press ? for an overview of the available keys. The second one has a folding view,
much like Org provides inside Emacs. The script is available at https://orgmode.org/

org-info.js and the documentation at https://orgmode.org/worg/code/org-info-js/
. The script is hosted on https://orgmode.org, but for reliability, prefer installing it on
your own web server.

To use this program, just add this line to the Org file:

#+INFOJS_OPT: view:info toc:nil

The HTML header now has the code needed to automatically invoke the script. For setting
options, use the syntax from the above line for options described below:

‘path:’ The path to the script. The default is to grab the script from https://

orgmode.org/org-info.js, but you might want to have a local copy and
use a path like ‘../scripts/org-info.js’.

‘view:’ Initial view when the website is first shown. Possible values are:

‘info’ Info-like interface with one section per page
‘overview’ Folding interface, initially showing only top-level
‘content’ Folding interface, starting with all headlines visible
‘showall’ Folding interface, all headlines and text visible

‘sdepth:’ Maximum headline level still considered as an independent section for info and
folding modes. The default is taken from org-export-headline-levels, i.e.,

https://orgmode.org/org-info.js
https://orgmode.org/org-info.js
https://orgmode.org/worg/code/org-info-js/
https://orgmode.org/worg/code/org-info-js/
https://orgmode.org
https://orgmode.org/org-info.js
https://orgmode.org/org-info.js

Chapter 13: Exporting 174

the ‘H’ switch in ‘OPTIONS’. If this is smaller than in org-export-headline-

levels, each info/folding section can still contain child headlines.

‘toc:’ Should the table of contents initially be visible? Even when ‘nil’, you can
always get to the “toc” with i.

‘tdepth:’ The depth of the table of contents. The defaults are taken from the variables
org-export-headline-levels and org-export-with-toc.

‘ftoc:’ Does the CSS of the page specify a fixed position for the “toc”? If yes, the
TOC is displayed as a section.

‘ltoc:’ Should there be short contents (children) in each section? Make this ‘above’ if
the section should be above initial text.

‘mouse:’ Headings are highlighted when the mouse is over them. Should be ‘underline’
(default) or a background color like ‘#cccccc’.

‘buttons:’
Should view-toggle buttons be everywhere? When ‘nil’ (the default), only one
such button is present.

You can choose default values for these options by customizing the variable org-infojs-
options. If you always want to apply the script to your pages, configure the variable
org-export-html-use-infojs.

13.10 LATEX Export

The LATEX export backend can handle complex documents, incorporate standard or custom
LATEX document classes, generate documents using alternate LATEX engines, and produce
fully linked PDF files with indexes, bibliographies, and tables of contents, destined for
interactive online viewing or high-quality print publication.

While the details are covered in-depth in this section, here are some quick references
to variables for the impatient: for engines, see org-latex-compiler; for build sequences,
see org-latex-pdf-process; for packages, see org-latex-default-packages-alist and
org-latex-packages-alist.

An important note about the LATEX export backend: it is sensitive to blank lines in the
Org document. That’s because LATEX itself depends on blank lines to tell apart syntactical
elements, such as paragraphs.

The following sections expect users to be familiar with common LATEX terminology. You
may refer to https://tug.org/begin.html to get familiar with LATEX basics. Users with
LATEX installed may also run ‘texdoc latex’ from terminal to open LATEX introduction13

13.10.1 LATEX/PDF export commands

C-c C-e l l (org-latex-export-to-latex)
Export to a LATEX file with a ‘.tex’ extension. For ‘myfile.org’, Org exports
to ‘myfile.tex’, overwriting without warning.

13 The command will open a PDF file, which is also available for download from http://mirrors.ctan.

org/info/latex-doc-ptr/latex-doc-ptr.pdf

https://tug.org/begin.html
http://mirrors.ctan.org/info/latex-doc-ptr/latex-doc-ptr.pdf
http://mirrors.ctan.org/info/latex-doc-ptr/latex-doc-ptr.pdf

Chapter 13: Exporting 175

C-c C-e l L (org-latex-export-as-latex)
Export to a temporary buffer. Do not create a file.

C-c C-e l p (org-latex-export-to-pdf)
Export as LATEX file and convert it to PDF file.

C-c C-e l o

Export as LATEX file and convert it to PDF, then open the PDF using the
default viewer.

M-x org-export-region-as-latex

Convert the region to LATEX under the assumption that it was in Org mode
syntax before. This is a global command that can be invoked in any buffer.

The LATEX export backend can use any of these LATEX engines: ‘pdflatex’, ‘xelatex’,
and ‘lualatex’. These engines compile LATEX files with different compilers, packages,
and output options. The LATEX export backend finds the compiler version to use from
org-latex-compiler variable or the ‘#+LATEX_COMPILER’ keyword in the Org file. See the
docstring for the org-latex-default-packages-alist for loading packages with certain
compilers. Also see org-latex-bibtex-compiler to set the bibliography compiler14.

13.10.2 LATEX specific export settings

The LATEX export backend has several additional keywords for customizing LATEX output.
Setting these keywords works similar to the general options (see Section 13.2 [Export Set-
tings], page 154).

‘DESCRIPTION’
The document’s description. The description along with author name, key-
words, and related file metadata are inserted in the output file by the hyperref
package. See org-latex-hyperref-template for customizing metadata items.
See org-latex-title-command for typesetting description into the document’s
front matter. Use multiple ‘DESCRIPTION’ keywords for long descriptions.

‘LANGUAGE’
Language code of the primary document language. When ‘LANGUAGE’ keyword
is not specified use the value of org-export-default-language (by default -
‘en’, American English)

The list of language codes supported by Org is stored in the variable org-latex-
language-alist.

In order to be effective, the ‘babel’ or ‘polyglossia’ packages—according to
the LATEX compiler used—must be loaded with the appropriate language as
argument. This can be accomplished by modifying the org-latex-packages-

alist variable, e.g., with the following snippet (note that ‘polyglossia’ does
not work with pdfLATEX):

(add-to-list 'org-latex-packages-alist

'("AUTO" "babel" t ("pdflatex" "xelatex" "lualatex")))

(add-to-list 'org-latex-packages-alist

'("AUTO" "polyglossia" t ("xelatex" "lualatex")))

14 This does not allow setting different bibliography compilers for different files. However, “smart” LATEX
compilation systems, such as latexmk, can select the correct bibliography compiler.

Chapter 13: Exporting 176

‘LATEX_CLASS’
This is LATEX document class, such as article, report, book, and so on, which
contain predefined preamble and headline level mapping that the LATEX export
backend needs. The backend reads the default class name from the org-latex-
default-class variable. Org has article as the default class. A valid default
class must be an element of org-latex-classes.

‘LATEX_CLASS_OPTIONS’
Options the LATEX export backend uses when calling the LATEX document class.

‘LATEX_COMPILER’
The compiler, such as ‘pdflatex’, ‘xelatex’, ‘lualatex’, for producing the
PDF. See org-latex-compiler.

‘LATEX_HEADER’, ‘LATEX_HEADER_EXTRA’
Arbitrary lines to add to the document’s preamble, before the hyperref settings.
See org-latex-classes for adjusting the structure and order of the LATEX
headers.

‘KEYWORDS’
The keywords for the document. The description along with author name, key-
words, and related file metadata are inserted in the output file by the hyperref
package. See org-latex-hyperref-template for customizing metadata items.
See org-latex-title-command for typesetting description into the document’s
front matter. Use multiple ‘KEYWORDS’ lines if necessary.

‘SUBTITLE’
The document’s subtitle. It is typeset as per org-latex-subtitle-format.
If org-latex-subtitle-separate is non-nil, it is typed outside the \title

macro. See org-latex-hyperref-template for customizing metadata items.
See org-latex-title-command for typesetting description into the document’s
front matter.

The following sections have further details.

13.10.3 LATEX header and sectioning structure

The LATEX export backend converts the first three of Org’s outline levels into LATEX head-
lines. The remaining Org levels are exported as lists. To change this globally for the cut-off
point between levels and lists, (see Section 13.2 [Export Settings], page 154).

By default, the LATEX export backend uses the article class.

To change the default class globally, edit org-latex-default-class. To change the de-
fault class locally in an Org file, add option lines ‘#+LATEX_CLASS: myclass’. To change the
default class for just a part of the Org file, set a subtree property, ‘EXPORT_LATEX_CLASS’.
The class name entered here must be valid member of org-latex-classes. This vari-
able defines a header template for each class into which the exporter splices the values
of org-latex-default-packages-alist and org-latex-packages-alist. Use the same
three variables to define custom sectioning or custom classes.

The LATEX export backend sends the ‘LATEX_CLASS_OPTIONS’ keyword and
‘EXPORT_LATEX_CLASS_OPTIONS’ property as options to the LATEX \documentclass macro.

Chapter 13: Exporting 177

The options and the syntax for specifying them, including enclosing them in square
brackets, follow LATEX conventions.

#+LATEX_CLASS_OPTIONS: [a4paper,11pt,twoside,twocolumn]

The LATEX export backend appends values from ‘LATEX_HEADER’ and
‘LATEX_HEADER_EXTRA’ keywords to the LATEX header. The docstring for org-latex-

classes explains in more detail. Also note that LATEX export backend does not append
‘LATEX_HEADER_EXTRA’ to the header when previewing LATEX snippets (see Section 12.5.2
[Previewing LATEX fragments], page 144).

A sample Org file with the above headers:

#+LATEX_CLASS: article

#+LATEX_CLASS_OPTIONS: [a4paper]

#+LATEX_HEADER: \usepackage{xyz}

* Headline 1

some text

* Headline 2

some more text

LATEX packages ‘babel’ or ‘polyglossia’ can also be loaded in a document. The
“AUTO” string will be replaced in both cases by the appropriate value for the ‘LANGUAGE’
keyword, if present in the document, or by the value of org-export-default-language.
Let’s see some examples in one or another case.

‘Babel’ accepts the classic syntax and (in addition) the new syntax with the
‘\babelprovide’ command to load the languages using the new ‘INI’ files procedure. Keep
in mind that there are a number of languages that are only served in babel using ‘INI’ files,
so they cannot be declared using the classic syntax, but only using the ‘\babelprovide’
command (see https://mirrors.ctan.org/macros/latex/required/babel/base/

babel.pdf). Valid usage examples could be:

#+LATEX_HEADER: \usepackage[french,italian,AUTO]{babel}

where “AUTO” is the main language. But it can also be loaded using the
‘\babelprovide’ command:

#+LATEX_HEADER: \usepackage[french,italian]{babel}

#+LATEX_HEADER: \babelprovide[import, main]{AUTO}

‘Polyglossia’, for this procedure to be effective, must be loaded using the same ‘babel’
classic syntax (but note that this is not the actual polyglossia syntax). For example, suppose
a document declares Polytonic Greek as the primary language, and French as the secondary
language. In this case, it would be expressed as:

#+LANGUAGE: el-polyton

#+LATEX_HEADER: \usepackage[french,AUTO]{polyglossia}

This would produce in LATEX (with the actual ‘polyglossia’ syntax):

\usepackage{polyglossia}

\setmainlanguage[variant=polytonic]{greek}

\setotherlanguage{french}

https://mirrors.ctan.org/macros/latex/required/babel/base/babel.pdf
https://mirrors.ctan.org/macros/latex/required/babel/base/babel.pdf

Chapter 13: Exporting 178

13.10.4 Quoting LATEX code

When the available LATEX export customizations are not sufficient to fine-tune the desired
output, it is possible to insert any arbitrary LATEX code (see Section 12.5 [Embedded LATEX],
page 143). There are three ways to embed such code in the Org file, and they all use different
quoting syntax.

Inserting in-line quoted with @ symbols:

Code embedded in-line @@latex:any arbitrary LaTeX code@@ in a paragraph.

Inserting as one or more keyword lines in the Org file:

#+LATEX: any arbitrary LaTeX code

Inserting as an export block in the Org file, where the backend exports any code between
begin and end markers:

#+BEGIN_EXPORT latex

any arbitrary LaTeX code

#+END_EXPORT

13.10.5 Tables in LATEX export

The LATEX export backend can pass several LATEX attributes for table contents and layout.
Besides specifying a label (see Section 4.2 [Internal Links], page 40) and a caption (see
Section 12.8 [Captions], page 150), the other valid LATEX attributes include:

‘:mode’ The LATEX export backend wraps the table differently depending on the mode
for accurate rendering of math symbols. Mode is either ‘table’, ‘math’,
‘inline-math’, ‘verbatim’ or ‘tabbing’.

For ‘math’ or ‘inline-math’ mode, LATEX export backend wraps the table in
a math environment, but every cell in it is exported as-is. For ‘tabbing’ the
LATEX tabbing environment is used and the correct tabbing delimiters ‘\>’ are
used. The LATEX export backend determines the default mode from org-latex-

default-table-mode. The LATEX export backend merges contiguous tables in
the same mode into a single environment.

‘:environment’
Set the default LATEX table environment for the LATEX export backend to use
when exporting Org tables. Common LATEX table environments are provided by
these packages: tabularx, longtable, array, tabu, and bmatrix. For packages,
such as tabularx and tabu, or any newer replacements, include them in the
org-latex-packages-alist variable so the LATEX export backend can insert
the appropriate load package headers in the converted LATEX file. Look in the
docstring for the org-latex-packages-alist variable for configuring these
packages for LATEX snippet previews, if any.

‘:caption’
Use ‘CAPTION’ keyword to set a simple caption for a table (see Section 12.8
[Captions], page 150). For custom captions, use ‘:caption’ attribute, which
accepts raw LATEX code. ‘:caption’ value overrides ‘CAPTION’ value.

‘:float’, ‘:placement’
The table environments by default are not floats in LATEX. To make them
floating objects use ‘:float’ with one of the following options: ‘t’ (for a de-

Chapter 13: Exporting 179

fault ‘table’ environment), ‘sideways’ (for a ‘sidewaystable’ environment),
‘multicolumn’ (to span the table across multiple columns of a page in a ‘table*’
environment) and ‘nil’. In addition to these three values, ‘:float’ can pass
through any arbitrary value, for example a user-defined float type with the
‘float’ LATEX package.

LATEX floats can also have additional layout ‘:placement’ attributes. These are
the usual ‘[h t b p ! H]’ permissions specified in square brackets. Note that
for ‘:float sideways’ tables, the LATEX export backend ignores ‘:placement’
attributes.

‘:align’, ‘:font’, ‘:width’
The LATEX export backend uses these attributes for regular tables to set their
alignments, fonts, and widths.

‘:options’
The ‘:options’ attribute allows adding an optional argument with
a list of various table options (between brackets in LATEX export),
since certain tabular environments, such as longtblr of the tabularray
LATEX package, provides this structure. For example: ‘:options
remark{Note}={note},remark{Source}={source}’.

‘:spread’ When ‘:spread’ is non-nil, the LATEX export backend spreads or shrinks the
table by the ‘:width’ for tabu and longtabu environments. ‘:spread’ has no
effect if ‘:width’ is not set.

‘:booktabs’, ‘:center’, ‘:rmlines’
All three commands are toggles. ‘:booktabs’ brings in modern typesetting
enhancements to regular tables. The booktabs package has to be loaded through
org-latex-packages-alist. ‘:center’ is for centering the table. ‘:rmlines’
removes all but the very first horizontal line made of ASCII characters from
“table.el” tables only.

‘:math-prefix’, ‘:math-suffix’, ‘:math-arguments’
The LATEX export backend inserts ‘:math-prefix’ string value in a math en-
vironment before the table. The LATEX export backend inserts ‘:math-suffix’
string value in a math environment after the table. The LATEX export backend
inserts ‘:math-arguments’ string value between the macro name and the table’s
contents. ‘:math-arguments’ comes in use for matrix macros that require more
than one argument, such as ‘qbordermatrix’.

LATEX table attributes help to format tables for a wide range of situations, such as matrix
product or spanning multiple pages:

#+ATTR_LATEX: :environment longtable :align l|lp{3cm}r|l

| ... | ... |

| ... | ... |

#+ATTR_LATEX: :mode math :environment bmatrix :math-suffix \times

| a | b |

| c | d |

#+ATTR_LATEX: :mode math :environment bmatrix

Chapter 13: Exporting 180

| 1 | 2 |

| 3 | 4 |

Set the caption with the LATEX command ‘\bicaption{HeadingA}{HeadingB}’:

#+ATTR_LATEX: :caption \bicaption{HeadingA}{HeadingB}

| ... | ... |

| ... | ... |

13.10.6 Images in LATEX export

The LATEX export backend processes image links in Org files that do not have descriptions,
such as these links ‘[[file:img.jpg]]’ or ‘[[./img.jpg]]’, as direct image insertions in
the final PDF output. In the PDF, they are no longer links, but actual images embedded on
the page. The LATEX export backend uses ‘\includegraphics’ macro to insert the image.
But for TikZ (https://sourceforge.net/projects/pgf/) images, the backend uses an
\input macro wrapped within a tikzpicture environment.

For specifying image ‘:width’, ‘:height’, ‘:scale’ and other ‘:options’, use this syntax:

#+ATTR_LATEX: :width 5cm :options angle=90

[[./img/sed-hr4049.pdf]]

A ‘:scale’ attribute overrides both ‘:width’ and ‘:height’ attributes.

For custom commands for captions, use the ‘:caption’ attribute. It overrides the default
‘#+CAPTION’ value:

#+ATTR_LATEX: :caption \bicaption{HeadingA}{HeadingB}

[[./img/sed-hr4049.pdf]]

When captions follow the method as described in Section 12.8 [Captions], page 150, the
LATEX export backend wraps the picture in a floating ‘figure’ environment. To float an
image without specifying a caption, set the ‘:float’ attribute to one of the following:

‘t’ For a default ‘figure’ environment.

‘multicolumn’
To span the image across multiple columns of a page; the backend wraps the
image in a ‘figure*’ environment.

‘wrap’ For text to flow around the image on the right; the figure occupies the left half
of the page.

‘sideways’
For a new page with the image sideways, rotated ninety degrees, in a
‘sidewaysfigure’ environment; overrides ‘:placement’ setting.

‘nil’ To avoid a ‘:float’ even if using a caption.

Any arbitrary value
For example, a user-defined float type with the ‘float’ LATEX package.

Use the ‘placement’ attribute to modify a floating environment’s placement.

#+ATTR_LATEX: :float wrap :width 0.38\textwidth :placement {r}{0.4\textwidth}

[[./img/hst.png]]

The LATEX export backend centers all images by default. Setting ‘:center’ to ‘nil’
disables centering. To disable centering globally, set org-latex-images-centered to ‘nil’.

https://sourceforge.net/projects/pgf/

Chapter 13: Exporting 181

Set the ‘:comment-include’ attribute to non-nil value for the LATEX export backend to
comment out the ‘\includegraphics’ macro.

13.10.7 Plain lists in LATEX export

The LATEX export backend accepts the ‘environment’ and ‘options’ attributes for plain
lists. Both attributes work together for customizing lists, as shown in the examples:

#+LATEX_HEADER: \usepackage[inline]{enumitem}

Some ways to say "Hello":

#+ATTR_LATEX: :environment itemize*

#+ATTR_LATEX: :options [label={}, itemjoin={,}, itemjoin*={, and}]

- Hola

- Bonjour

- Guten Tag.

Since LATEX supports only four levels of nesting for lists, use an external package, such
as ‘enumitem’ in LATEX, for levels deeper than four:

#+LATEX_HEADER: \usepackage{enumitem}

#+LATEX_HEADER: \renewlist{itemize}{itemize}{9}

#+LATEX_HEADER: \setlist[itemize]{label=\circ}

- One

- Two

- Three

- Four

- Five

13.10.8 Source blocks in LATEX export

LATEX export backend provides multiple ways to render src blocks in LATEX, according to
the value of org-latex-src-block-backend. The default value ‘verbatim’ renders the src
code verbatim, without any extra styling. Alternative values allow more colorful styling, but
require additional LATEX (‘listings’, ‘minted’), system (‘minted’), or Emacs (‘engraved’)
packages. See the org-latex-src-block-backend docstring for more details.

The LATEX export backend can make source code blocks into floating objects through
the attributes ‘:float’ and ‘:options’. For ‘:float’:

‘t’ Makes a source block float; by default floats any source block with a caption.

‘multicolumn’
Spans the source block across multiple columns of a page.

‘nil’ Avoids a ‘:float’ even if using a caption; useful for source code blocks that
may not fit on a page.

#+ATTR_LATEX: :float nil

#+BEGIN_SRC emacs-lisp

Lisp code that may not fit in a single page.

#+END_SRC

The LATEX export backend passes string values in ‘:options’ to LATEX packages for
customization of that specific source block. In the example below, the ‘:options’ are set
for Engraved or Minted. Minted is a source code highlighting LATEX package with many

Chapter 13: Exporting 182

configurable options15. Both Minted and Engraved are built on fvextra, and so support
many of the same options.

#+ATTR_LATEX: :options mathescape

#+BEGIN_SRC emacs-lisp

(defun Fib (n) ; $n_i = n_{i-2} + n_{i-1}$

(if (< n 2) n (+ (Fib (- n 1)) (Fib (- n 2)))))

#+END_SRC

To apply similar configuration options for all source blocks in a file, use the org-latex-
listings-options, org-latex-engraved-options, and org-latex-minted-options

variables.

13.10.9 Example blocks in LATEX export

The LATEX export backend wraps the contents of example blocks in a ‘verbatim’ environ-
ment. To change this behavior to use another environment globally, specify an appropriate
export filter (see Section 13.17 [Advanced Export Configuration], page 206). To change this
behavior to use another environment for each block, use the ‘:environment’ parameter to
specify a custom environment.

#+ATTR_LATEX: :environment myverbatim

#+BEGIN_EXAMPLE

This sentence is false.

#+END_EXAMPLE

13.10.10 Special blocks in LATEX export

For other special blocks in the Org file, the LATEX export backend makes a special environ-
ment of the same name. The backend also takes ‘:options’, if any, and appends as-is to
that environment’s opening string. For example:

#+BEGIN_abstract

We demonstrate how to solve the Syracuse problem.

#+END_abstract

#+ATTR_LATEX: :options [Proof of important theorem]

#+BEGIN_proof

...

Therefore, any even number greater than 2 is the sum of two primes.

#+END_proof

exports to

\begin{abstract}

We demonstrate how to solve the Syracuse problem.

\end{abstract}

\begin{proof}[Proof of important theorem]

...

Therefore, any even number greater than 2 is the sum of two primes.

15 Minted uses an external Python package for code highlighting, which requires the flag ‘-shell-escape’
to be added to org-latex-pdf-process.

https://www.ctan.org/pkg/fvextra

Chapter 13: Exporting 183

\end{proof}

If you need to insert a specific caption command, use ‘:caption’ attribute. It overrides
standard ‘CAPTION’ value, if any. For example:

#+ATTR_LATEX: :caption \MyCaption{HeadingA}

#+BEGIN_proof

...

#+END_proof

13.10.11 Horizontal rules in LATEX export

The LATEX export backend converts horizontal rules by the specified ‘:width’ and
‘:thickness’ attributes. For example:

#+ATTR_LATEX: :width .6\textwidth :thickness 0.8pt

13.10.12 Verse blocks in LATEX export

The LATEX export backend accepts five attributes for verse blocks: ‘:lines’, ‘:center’,
‘:versewidth’, ‘:latexcode’ and ‘:literal’. The three first require the external LATEX
package ‘verse.sty’, which is an extension of the standard LATEX environment.

‘:lines’ To add marginal verse numbering. Its value is an integer, the sequence in which
the verses should be numbered.

‘:center’ With value ‘t’ all the verses on the page are optically centered (a typographic
convention for poetry), taking as a reference the longest verse, which must be
indicated by the attribute ‘:versewidth’.

‘:versewidth’
Its value is a literal text string with the longest verse.

‘:latexcode’
It accepts any arbitrary LATEX code that can be included within a LATEX ‘verse’
environment.

‘:literal’
With value t, all blank lines are preserved and exported as
‘\vspace*{\baselineskip}’, including the blank lines before or after
contents. Note that without the ‘:literal’ attribute, one or more blank lines
between stanzas are exported as a single blank line, and any blank lines before
or after the content are removed, which is more consistent with the syntax of
the LATEX ‘verse’ environment, and the one provided by the ‘verse’ package.
If the ‘verse’ package is loaded, the vertical spacing between all stanzas can
be controlled by the global length ‘\stanzaskip’ (see https://www.ctan.

org/pkg/verse).

A complete example with Shakespeare’s first sonnet:

#+ATTR_LATEX: :center t :latexcode \color{red} :lines 5

#+ATTR_LATEX: :versewidth Feed’st thy light’s flame with self-substantial fuel,

#+BEGIN_VERSE

From fairest creatures we desire increase,

https://www.ctan.org/pkg/verse
https://www.ctan.org/pkg/verse

Chapter 13: Exporting 184

That thereby beauty’s rose might never die,

But as the riper should by time decease

His tender heir might bear his memory

But thou, contracted to thine own bright eyes,

Feed’st thy light’s flame with self-substantial fuel,

Making a famine where abundance lies,

Thyself thy foe, to thy sweet self too cruel.

Thou that art now the world’s fresh ornament,

And only herald to the gaudy spring,

Within thine own bud buriest thy content,

And, tender churl, mak’st waste in niggardly.

Pity the world, or else this glutton be,

To eat the world’s due, by the grave and thee.

#+END_VERSE

13.10.13 Quote blocks in LATEX export

The LATEX export backend accepts two attributes for quote blocks: ‘:environment’,
for an arbitrary quoting environment (the default value is that of org-latex-default-
quote-environment: "quote") and ‘:options’. For example, to choose the environment
‘quotation’, included as an alternative to ‘quote’ in standard LATEX classes:

#+ATTR_LATEX: :environment quotation

#+BEGIN_QUOTE

some text...

#+END_QUOTE

To choose the ‘foreigndisplayquote’ environment, included in the LATEX package
‘csquotes’, with the ‘german’ option, use this syntax:

#+LATEX_HEADER:\usepackage[autostyle=true]{csquotes}

#+ATTR_LATEX: :environment foreigndisplayquote :options {german}

#+BEGIN_QUOTE

some text in German...

#+END_QUOTE

which is exported to LATEX as

\begin{foreigndisplayquote}{german}

some text in German...

\end{foreigndisplayquote}

13.11 Markdown Export

The Markdown export backend, “md”, converts an Org file to Markdown format, as defined
at https://daringfireball.net/projects/markdown/. This is the original Markdown
specification, developed by John Gruber and Aaron Swartz.

Since “md” backend is built on top of the HTML backend (see Section 13.9 [HTML
Export], page 166), it converts every Org construct not defined in Markdown syntax, such
as tables, to HTML.

Do note that the original Markdown syntax has differences with other commonly used
Markdown flavors. See https://en.wikipedia.org/wiki/Markdown for more details.

https://daringfireball.net/projects/markdown/
https://en.wikipedia.org/wiki/Markdown

Chapter 13: Exporting 185

Markdown export commands

C-c C-e m m (org-md-export-to-markdown)
Export to a text file with Markdown syntax. For ‘myfile.org’, Org exports to
‘myfile.md’, overwritten without warning.

C-c C-e m M (org-md-export-as-markdown)
Export to a temporary buffer. Does not create a file.

C-c C-e m o

Export as a text file with Markdown syntax, then open it.

Header and sectioning structure

Based on org-md-headline-style, Markdown export can generate headlines of both atx
and setext types. setext limits headline levels to two whereas atx limits headline levels to six.
mixed exports headline levels one and two in setext-style, and headline levels three through
six as atx-style headlines. Beyond these limits, the export backend converts headlines to
lists. To set a limit to a level before the absolute limit (see Section 13.2 [Export Settings],
page 154).

13.12 OpenDocument Text Export

The ODT export backend handles creating of OpenDocument Text (ODT) format. Doc-
uments created by this exporter use the OpenDocument-v1.2 specification16 and are com-
patible with LibreOffice 3.4.

13.12.1 Pre-requisites for ODT export

The ODT export backend relies on the zip program to create the final compressed ODT
output. Check if ‘zip’ is locally available and executable. Without it, export cannot finish.

13.12.2 ODT export commands

C-c C-e o o (org-odt-export-to-odt)
Export as OpenDocument Text file.

If org-odt-preferred-output-format is specified, the ODT export backend
automatically converts the exported file to that format.

For ‘myfile.org’, Org exports to ‘myfile.odt’, overwriting without warning.
The ODT export backend exports a region only if a region was active.

If the selected region is a single tree, the ODT export backend makes the tree
head the document title. Incidentally, C-c @ selects the current subtree. If the
tree head entry has, or inherits, an ‘EXPORT_FILE_NAME’ property, the ODT
export backend uses that for file name.

C-c C-e o O

Export as an OpenDocument Text file and open the resulting file.

If org-export-odt-preferred-output-format is specified, open the converted
file instead. See [Automatically exporting to other formats], page 186.

16 See Open Document Format for Office Applications (OpenDocument) Version 1.2.

https://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2.html

Chapter 13: Exporting 186

13.12.3 ODT specific export settings

The ODT export backend has several additional keywords for customizing ODT output.
Setting these keywords works similar to the general options (see Section 13.2 [Export Set-
tings], page 154).

‘DESCRIPTION’
This is the document’s description, which the ODT export backend inserts as
document metadata. For long descriptions, use multiple lines, prefixed with
‘DESCRIPTION’.

‘KEYWORDS’
The keywords for the document. The ODT export backend inserts the descrip-
tion along with author name, keywords, and related file metadata as metadata
in the output file. Use multiple ‘KEYWORDS’ if necessary.

‘ODT_STYLES_FILE’
The ODT export backend uses the org-odt-styles-file by default. See
Section 13.12.5 [Applying custom styles], page 187 for details.

‘SUBTITLE’
The document subtitle.

13.12.4 Extending ODT export

The ODT export backend can produce documents in other formats besides ODT using a
specialized ODT converter process. Its common interface works with popular converters
to produce formats such as ‘doc’, or convert a document from one format, say ‘csv’, to
another format, say ‘xls’.

Customize org-odt-convert-process variable to point to ‘unoconv’, which is the
ODT’s preferred converter. Working installations of LibreOffice would already have
‘unoconv’ installed. Alternatively, other converters may be substituted here. See
[Configuring a document converter], page 191.

Automatically exporting to other formats

If ODT format is just an intermediate step to get to other formats, such as ‘doc’, ‘docx’,
‘rtf’, or ‘pdf’, etc., then extend the ODT export backend to directly produce that format.
Specify the final format in the org-odt-preferred-output-format variable. This is one
way to extend (see Section 13.12.2 [ODT export commands], page 185).

Converting between document formats

The Org export backend is made to be interoperable with a wide range of text document
format converters. Newer generation converters, such as LibreOffice and Pandoc, can handle
hundreds of formats at once. Org provides a consistent interaction with whatever converter
is installed. Here are some generic commands:

M-x org-odt-convert

Convert an existing document from one format to another. With a prefix ar-
gument, opens the newly produced file.

Chapter 13: Exporting 187

13.12.5 Applying custom styles

The ODT export backend comes with many OpenDocument styles (see [Working with
OpenDocument style files], page 191). To expand or further customize these built-in style
sheets, either edit the style sheets directly or generate them using an application such as
LibreOffice. The example here shows creating a style using LibreOffice.

Applying custom styles: the easy way

1. Create a sample ‘example.org’ file with settings as shown below, and export it to ODT
format.

#+OPTIONS: H:10 num:t

2. Open the above ‘example.odt’ using LibreOffice. Use the Stylist to locate the target
styles, which typically have the “Org” prefix. Open one, modify, and save as either
OpenDocument Text (ODT) or OpenDocument Template (OTT) file.

3. Customize the variable org-odt-styles-file and point it to the newly created file.
For additional configuration options, see [Overriding factory styles], page 192.

To apply an ODT style to a particular file, use the ‘ODT_STYLES_FILE’ keyword as
shown in the example below:

#+ODT_STYLES_FILE: "/path/to/example.ott"

or

#+ODT_STYLES_FILE: ("/path/to/file.ott" ("styles.xml" "image/hdr.png"))

Using third-party styles and templates

The ODT export backend relies on many templates and style names. Using third-party
styles and templates can lead to mismatches. Templates derived from built-in ODT tem-
plates and styles seem to have fewer problems.

13.12.6 Links in ODT export

ODT exporter creates native cross-references for internal links. It creates Internet-style
links for all other links.

A link with no description and pointing to a regular, un-itemized, outline heading is
replaced with a cross-reference and section number of the heading.

A ‘\ref{label}’-style reference to an image, table etc., is replaced with a cross-reference
and sequence number of the labeled entity. See Section 13.12.10 [Labels and captions in
ODT export], page 190.

13.12.7 Tables in ODT export

The ODT export backend handles native Org mode tables (see Chapter 3 [Tables], page 18)
and simple ‘table.el’ tables. Complex ‘table.el’ tables having column or row spans are
not supported. Such tables are stripped from the exported document.

By default, the ODT export backend exports a table with top and bottom frames and
with ruled lines separating row and column groups (see Section 3.3 [Column Groups],
page 23). All tables are typeset to occupy the same width. The ODT export backend
honors any table alignments and relative widths for columns (see Section 3.2 [Column
Width and Alignment], page 22).

Chapter 13: Exporting 188

Note that the ODT export backend interprets column widths as weighted ratios, the
default weight being 1.

Specifying ‘:rel-width’ property on an ‘ATTR_ODT’ line controls the width of the table.
For example:

#+ATTR_ODT: :rel-width 50

| Area/Month | Jan | Feb | Mar | Sum |

|---------------+-------+-------+-------+-------|

| / | < | | | < |

| <l13> | <r5> | <r5> | <r5> | <r6> |

| North America | 1 | 21 | 926 | 948 |

| Middle East | 6 | 75 | 844 | 925 |

| Asia Pacific | 9 | 27 | 790 | 826 |

|---------------+-------+-------+-------+-------|

| Sum | 16 | 123 | 2560 | 2699 |

On export, the above table takes 50% of text width area. The exporter sizes the columns
in the ratio: 13:5:5:5:6. The first column is left-aligned and rest of the columns, right-
aligned. Vertical rules separate the header and the last column. Horizontal rules separate
the header and the last row.

For even more customization, create custom table styles and associate them with a table
using the ‘ATTR_ODT’ keyword. See [Customizing tables in ODT export], page 193.

13.12.8 Images in ODT export

Embedding images

The ODT export backend processes image links in Org files that do not have descriptions,
such as these links ‘[[file:img.jpg]]’ or ‘[[./img.jpg]]’, as direct image insertions in
the final output. Either of these examples works:

[[file:img.png]]

[[./img.png]]

Embedding clickable images

For clickable images, provide a link whose description is another link to an image file.
For example, to embed an image ‘org-mode-unicorn.png’ which when clicked jumps to
https://orgmode.org website, do the following

[[https://orgmode.org][./org-mode-unicorn.png]]

Sizing and scaling of embedded images

Control the size and scale of the embedded images with the ‘ATTR_ODT’ attribute.

The ODT export backend starts with establishing the size of the image in the final
document. The dimensions of this size are measured in centimeters. The backend then
queries the image file for its dimensions measured in pixels. For this measurement, the
backend relies on ImageMagick’s identify program or Emacs create-image and image-size

API. ImageMagick is the preferred choice for large file sizes or frequent batch operations.
The backend then converts the pixel dimensions using org-odt-pixels-per-inch into the
familiar 72 dpi or 96 dpi. The default value for this is in display-pixels-per-inch, which

https://orgmode.org

Chapter 13: Exporting 189

can be tweaked for better results based on the capabilities of the output device. Here are
some common image scaling operations:

Explicitly size the image
To embed ‘img.png’ as a 10 cm x 10 cm image, do the following:

#+ATTR_ODT: :width 10 :height 10

[[./img.png]]

Scale the image
To embed ‘img.png’ at half its size, do the following:

#+ATTR_ODT: :scale 0.5

[[./img.png]]

Scale the image to a specific width
To embed ‘img.png’ with a width of 10 cm while retaining the original
height:width ratio, do the following:

#+ATTR_ODT: :width 10

[[./img.png]]

Scale the image to a specific height
To embed ‘img.png’ with a height of 10 cm while retaining the original
height:width ratio, do the following:

#+ATTR_ODT: :height 10

[[./img.png]]

Anchoring of images

The ODT export backend can anchor images to ‘as-char’, ‘paragraph’, or ‘page’. Set the
preferred anchor using the ‘:anchor’ property of the ‘ATTR_ODT’ line.

To create an image that is anchored to a page:

#+ATTR_ODT: :anchor page

[[./img.png]]

13.12.9 Math formatting in ODT export

The ODT exporter has special support for handling math.

13.12.9.1 LATEX math snippets

LATEX math snippets (see Section 12.5.1 [LATEX fragments], page 143) can be embedded in
the ODT document in one of the following ways:

MathML Add this line to the Org file. This option is activated on a per-file basis.

#+OPTIONS: tex:t

With this option, LATEX fragments are first converted into MathML fragments
using an external LATEX-to-MathML converter program. The resulting MathML
fragments are then embedded as an OpenDocument Formula in the exported
document.

You can specify the LATEX-to-MathML converter by customizing the variables
org-latex-to-mathml-convert-command and org-latex-to-mathml-jar-

file.

Chapter 13: Exporting 190

If you prefer to use MathToWeb17 as your converter, you can configure the
above variables as shown below.

(setq org-latex-to-mathml-convert-command

"java -jar %j -unicode -force -df %o %I"

org-latex-to-mathml-jar-file

"/path/to/mathtoweb.jar")

or, to use LATEXML18 instead,

(setq org-latex-to-mathml-convert-command

"latexmlmath %i --presentationmathml=%o")

To quickly verify the reliability of the LATEX-to-MathML converter, use the
following commands:

M-x org-export-as-odf

Convert a LATEX math snippet to an OpenDocument formula
(‘.odf’) file.

M-x org-export-as-odf-and-open

Convert a LATEX math snippet to an OpenDocument formula
(‘.odf’) file and open the formula file with the system-registered
application.

PNG images
Add this line to the Org file. This option is activated on a per-file basis.

#+OPTIONS: tex:dvipng

#+OPTIONS: tex:dvisvgm

or

#+OPTIONS: tex:imagemagick

Under this option, LATEX fragments are processed into PNG or SVG images and
the resulting images are embedded in the exported document. This method
requires dvipng program, dvisvgm or ImageMagick programs.

13.12.9.2 MathML and OpenDocument formula files

When embedding LATEX math snippets in ODT documents is not reliable, there is one
more option to try. Embed an equation by linking to its MathML (‘.mml’) source or its
OpenDocument formula (‘.odf’) file as shown below:

[[./equation.mml]]

or

[[./equation.odf]]

13.12.10 Labels and captions in ODT export

ODT format handles labeling and captioning of objects based on their types. Inline images,
tables, LATEX fragments, and Math formulas are numbered and captioned separately. Each
object also gets a unique sequence number based on its order of first appearance in the Org
file. Each category has its own sequence. A caption is just a label applied to these objects.

17 See MathToWeb.
18 See https://dlmf.nist.gov/LaTeXML/.

http://www.mathtoweb.com/cgi-bin/mathtoweb_home.pl
https://dlmf.nist.gov/LaTeXML/

Chapter 13: Exporting 191

#+CAPTION: Bell curve

#+NAME: fig:SED-HR4049

[[./img/a.png]]

When rendered, it may show as follows in the exported document:

Figure 2: Bell curve

To modify the category component of the caption, customize the option org-odt-

category-map-alist. For example, to tag embedded images with the string “Illustration”
instead of the default string “Figure”, use the following setting:

(setq org-odt-category-map-alist

'(("__Figure__" "Illustration" "value" "Figure" org-odt--enumerable-image-p)))

With the above modification, the previous example changes to:

Illustration 2: Bell curve

13.12.11 Literal examples in ODT export

The ODT export backend supports literal examples (see Section 12.6 [Literal Examples],
page 146) with full fontification. Internally, the ODT export backend relies on
‘htmlfontify.el’ to generate the style definitions needed for fancy listings. The
auto-generated styles get ‘OrgSrc’ prefix and inherit colors from the faces used by Emacs
Font Lock library for that source language.

For custom fontification styles, customize the org-odt-create-custom-styles-for-

srcblocks option.

To turn off fontification of literal examples, customize the org-odt-fontify-srcblocks
option.

13.12.12 Advanced topics in ODT export

The ODT export backend has extensive features useful for power users and frequent uses
of ODT formats.

Configuring a document converter

The ODT export backend works with popular converters with little or no extra config-
uration. See Section 13.12.4 [Extending ODT export], page 186. The following is for
unsupported converters or tweaking existing defaults.

Register the converter
Add the name of the converter to the org-odt-convert-processes variable.
Note that it also requires how the converter is invoked on the command line.
See the variable’s docstring for details.

Configure its capabilities
Specify which formats the converter can handle by customizing the variable
org-odt-convert-capabilities. Use the entry for the default values in this
variable for configuring the new converter. Also see its docstring for details.

Choose the converter
Select the newly added converter as the preferred one by customizing the option
org-odt-convert-process.

Chapter 13: Exporting 192

Working with OpenDocument style files

This section explores the internals of the ODT exporter; the means by which it produces
styled documents; the use of automatic and custom OpenDocument styles.

The ODT exporter relies on two files for generating its output. These files are bundled
with the distribution under the directory pointed to by the variable org-odt-styles-dir.
The two files are:

‘OrgOdtStyles.xml’
This file contributes to the ‘styles.xml’ file of the final ODT document. This
file gets modified for the following purposes:

1. To control outline numbering based on user settings;

2. To add styles generated by ‘htmlfontify.el’ for fontification of code
blocks.

‘OrgOdtContentTemplate.xml’
This file contributes to the ‘content.xml’ file of the final ODT document.
The contents of the Org outline are inserted between the ‘<office:text>’ . . .
‘</office:text>’ elements of this file.

Apart from serving as a template file for the final ‘content.xml’, the file serves
the following purposes:

1. It contains automatic styles for formatting of tables which are referenced
by the exporter;

2. It contains ‘<text:sequence-decl>’ . . . ‘</text:sequence-decl>’ ele-
ments that control numbering of tables, images, equations, and similar
entities.

The following two variables control the location from where the ODT exporter picks
up the custom styles and content template files. Customize these variables to override the
factory styles used by the exporter.

org-odt-styles-file

The ODT export backend uses the file pointed to by this variable, such as
‘styles.xml’, for the final output. It can take one of the following values:

‘FILE.xml’
Use this file instead of the default ‘styles.xml’

‘FILE.odt’ or ‘FILE.ott’
Use the ‘styles.xml’ contained in the specified OpenDocument
Text or Template file

‘FILE.odt’ or ‘FILE.ott’ and a subset of included files
Use the ‘styles.xml’ contained in the specified OpenDocument
Text or Template file. Additionally, extract the specified member
files and embed those within the final ODT document.

Use this option if the ‘styles.xml’ file references additional files
like header and footer images.

nil Use the default ‘styles.xml’.

Chapter 13: Exporting 193

org-odt-content-template-file

Use this variable to specify the blank ‘content.xml’ used in the final output.

Creating one-off styles

The ODT export backend can read embedded raw OpenDocument XML from the Org file.
Such direct formatting is useful for one-off instances.

Embedding ODT tags as part of regular text
Enclose OpenDocument syntax in ‘@@odt:...@@’ for inline markup. For exam-
ple, to highlight a region of text do the following:

@@odt:<text:span text:style-name="Highlight">This is highlighted

text</text:span>@@. But this is regular text.

Hint: To see the above example in action, edit the ‘styles.xml’ (see [Factory
styles], page 192) and add a custom Highlight style as shown below:

<style:style style:name="Highlight" style:family="text">

<style:text-properties fo:background-color="#ff0000"/>

</style:style>

Embedding a one-line OpenDocument XML
The ODT export backend can read one-liner options with ‘#+ODT:’ in the Org
file. For example, to force a page break:

#+ODT: <text:p text:style-name="PageBreak"/>

Hint: To see the above example in action, edit your ‘styles.xml’ (see [Factory
styles], page 192) and add a custom ‘PageBreak’ style as shown below.

<style:style style:name="PageBreak" style:family="paragraph"

style:parent-style-name="Text_20_body">

<style:paragraph-properties fo:break-before="page"/>

</style:style>

Embedding a block of OpenDocument XML
The ODT export backend can also read ODT export blocks for OpenDocu-
ment XML. Such blocks use the ‘#+BEGIN_EXPORT odt’ . . . ‘#+END_EXPORT’
constructs.

For example, to create a one-off paragraph that uses bold text, do the following:

#+BEGIN_EXPORT odt

<text:p text:style-name="Text_20_body_20_bold">

This paragraph is specially formatted and uses bold text.

</text:p>

#+END_EXPORT

Customizing tables in ODT export

Override the default table format by specifying a custom table style with the ‘#+ATTR_ODT’
line. For a discussion on default formatting of tables, see Section 13.12.7 [Tables in ODT
export], page 187.

This feature closely mimics the way table templates are defined in the OpenDocument-
v1.2 specification19.

19 OpenDocument-v1.2 Specification

https://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2.html

Chapter 13: Exporting 194

For quick preview of this feature, install the settings below and export the table that
follows:

(setq org-export-odt-table-styles

(append org-export-odt-table-styles

'(("TableWithHeaderRowAndColumn" "Custom"

((use-first-row-styles . t)

(use-first-column-styles . t)))

("TableWithFirstRowandLastRow" "Custom"

((use-first-row-styles . t)

(use-last-row-styles . t))))))

#+ATTR_ODT: :style TableWithHeaderRowAndColumn

| Name | Phone | Age |

| Peter | 1234 | 17 |

| Anna | 4321 | 25 |

The example above used ‘Custom’ template and installed two table styles
‘TableWithHeaderRowAndColumn’ and ‘TableWithFirstRowandLastRow’. Impor-
tant: The OpenDocument styles needed for producing the above template were
pre-defined. They are available in the section marked ‘Custom Table Template’ in
‘OrgOdtContentTemplate.xml’ (see [Factory styles], page 192). For adding new templates,
define new styles there.

To use this feature proceed as follows:

1. Create a table template20.

A table template is set of ‘table-cell’ and ‘paragraph’ styles for each of the following
table cell categories:

• Body

• First column

• Last column

• First row

• Last row

• Even row

• Odd row

• Even column

• Odd Column

The names for the above styles must be chosen based on the name of the table template
using a well-defined convention.

The naming convention is better illustrated with an example. For a table template
with the name ‘Custom’, the needed style names are listed in the following table.

Cell type Cell style Paragraph style
Body ‘CustomTableCell’ ‘CustomTableParagraph’
First column ‘CustomFirstColumnTableCell’ ‘CustomFirstColumnTableParagraph’

20 See the ‘<table:table-template>’ element of the OpenDocument-v1.2 specification.

Chapter 13: Exporting 195

Last column ‘CustomLastColumnTableCell’ ‘CustomLastColumnTableParagraph’
First row ‘CustomFirstRowTableCell’ ‘CustomFirstRowTableParagraph’
Last row ‘CustomLastRowTableCell’ ‘CustomLastRowTableParagraph’
Even row ‘CustomEvenRowTableCell’ ‘CustomEvenRowTableParagraph’
Odd row ‘CustomOddRowTableCell’ ‘CustomOddRowTableParagraph’
Even column ‘CustomEvenColumnTableCell’ ‘CustomEvenColumnTableParagraph’
Odd column ‘CustomOddColumnTableCell’ ‘CustomOddColumnTableParagraph’

To create a table template with the name ‘Custom’, define the above styles in the
‘<office:automatic-styles>’ . . . ‘</office:automatic-styles>’ element of the
content template file (see [Factory styles], page 192).

2. Define a table style21.

To define a table style, create an entry for the style in the variable org-odt-table-

styles and specify the following:

• the name of the table template created in step (1),

• the set of cell styles in that template that are to be activated.

For example, the entry below defines two different table styles ‘TableWithHeaderRowAndColumn’
and ‘TableWithFirstRowandLastRow’ based on the same template ‘Custom’. The
styles achieve their intended effect by selectively activating the individual cell styles
in that template.

(setq org-export-odt-table-styles

(append org-export-odt-table-styles

'(("TableWithHeaderRowAndColumn" "Custom"

((use-first-row-styles . t)

(use-first-column-styles . t)))

("TableWithFirstRowandLastRow" "Custom"

((use-first-row-styles . t)

(use-last-row-styles . t))))))

3. Associate a table with the table style.

To do this, specify the table style created in step (2) as part of the ‘ATTR_ODT’ line as
shown below.

#+ATTR_ODT: :style TableWithHeaderRowAndColumn

| Name | Phone | Age |

| Peter | 1234 | 17 |

| Anna | 4321 | 25 |

Validating OpenDocument XML

Sometimes ODT format files may not open due to ‘.odt’ file corruption. To verify if such
a file is corrupt, validate it against the OpenDocument Relax NG Compact (RNC) syntax
schema. But first the ‘.odt’ files have to be decompressed using ‘zip’. Note that ‘.odt’
files are ZIP archives: Section “File Archives” in emacs. The contents of ODT files are

21 See the attributes ‘table:template-name’, ‘table:use-first-row-styles’, ‘table:use-last-row-styles’,
‘table:use-first-column-styles’, ‘table:use-last-column-styles’, ‘table:use-banding-rows-styles’,
and ‘table:use-banding-column-styles’ of the ‘<table:table>’ element in the OpenDocument-v1.2
specification.

Chapter 13: Exporting 196

in XML. For general help with validation—and schema-sensitive editing—of XML files:
Section “Introduction” in nxml-mode.

Customize org-odt-schema-dir to point to a directory with OpenDocument RNC files
and the needed schema-locating rules. The ODT export backend takes care of updating the
rng-schema-locating-files.

13.13 Org Export

org export backend creates a normalized version of the Org document in current buffer.
The exporter evaluates Babel code (see Section 16.5 [Evaluating Code Blocks], page 239)
and removes content specific to other backends.

Org export commands

C-c C-e O o (org-org-export-to-org)
Export as an Org file with a ‘.org’ extension. For ‘myfile.org’, Org exports
to ‘myfile.org.org’, overwriting without warning.

C-c C-e O v (~~)
Export to an Org file, then open it.

13.14 Texinfo Export

13.14.1 Texinfo export commands

C-c C-e i t (org-texinfo-export-to-texinfo)
Export as a Texinfo file with ‘.texi’ extension. For ‘myfile.org’, Org exports
to ‘myfile.texi’, overwriting without warning.

C-c C-e i i (org-texinfo-export-to-info)
Export to Texinfo format first and then process it to make an Info file. To
generate other formats, such as DocBook, customize the org-texinfo-info-

process variable.

13.14.2 Texinfo specific export settings

The Texinfo export backend has several additional keywords for customizing Texinfo out-
put. Setting these keywords works similar to the general options (see Section 13.2 [Export
Settings], page 154).

‘SUBTITLE’
The document subtitle.

‘SUBAUTHOR’
Additional authors for the document.

‘TEXINFO_FILENAME’
The Texinfo filename.

‘TEXINFO_CLASS’
The default document class (org-texinfo-default-class), which must be a
member of org-texinfo-classes.

Chapter 13: Exporting 197

‘TEXINFO_HEADER’
Arbitrary lines inserted at the end of the header.

‘TEXINFO_POST_HEADER’
Arbitrary lines inserted after the end of the header.

‘TEXINFO_DIR_CATEGORY’
The directory category of the document. Defaults to Misc.

‘TEXINFO_DIR_NAME’
The directory name of the document. This is the short name under which the
m command will find your manual in the main Info directory. It defaults to the
base name of the Texinfo file.

The full form of the Texinfo entry is * DIRNAME: NODE. where NODE is usually
just (FILENAME). Normally this option only provides the DIRNAME part, but if
you need more control, it can also be the full entry (recognized by the presence
of parentheses or a leading ~* ~).

‘TEXINFO_DIR_DESC’
The directory description of the document. Defaults to the title of the docu-
ment.

‘TEXINFO_PRINTED_TITLE’
The printed title of the document.

13.14.3 Texinfo file header

After creating the header for a Texinfo file, the Texinfo backend automatically generates a
name and destination path for the Info file. To override this default with a more sensible
path and name, specify the ‘TEXINFO_FILENAME’ keyword.

Along with the output’s file name, the Texinfo header also contains language details (see
Section 13.2 [Export Settings], page 154) and encoding system as set in the org-texinfo-
coding-system variable. Insert ‘TEXINFO_HEADER’ keywords for each additional command
in the header, for example:

#+TEXINFO_HEADER: @synindex

Instead of repeatedly installing the same set of commands, define a class in org-texinfo-

classes once, and then activate it in the document by setting the ‘TEXINFO_CLASS’ keyword
to that class.

13.14.4 Texinfo title and copyright page

The default template for hard copy output has a title page with ‘TITLE’ and ‘AUTHOR’ key-
words (see Section 13.2 [Export Settings], page 154). To replace the regular title with some-
thing different for the printed version, use the ‘TEXINFO_PRINTED_TITLE’ and ‘SUBTITLE’
keywords. Both expect raw Texinfo code for setting their values.

If one ‘AUTHOR’ line is not sufficient, add multiple ‘SUBAUTHOR’ keywords. They have to
be set in raw Texinfo code.

#+AUTHOR: Jane Smith

#+SUBAUTHOR: John Doe

#+TEXINFO_PRINTED_TITLE: This Long Title@@inlinefmt{tex,@*} Is Broken in @TeX{}

Chapter 13: Exporting 198

Copying material is defined in a dedicated headline with a non-nil ‘COPYING’ property.
The backend inserts the contents within a ‘@copying’ command at the beginning of the
document. The heading itself does not appear in the structure of the document.

Copyright information is printed on the back of the title page.

* Legalese

:PROPERTIES:

:COPYING: t

:END:

This is a short example of a complete Texinfo file, version 1.0.

Copyright \copy 2016 Free Software Foundation, Inc.

13.14.5 Info directory file

The end result of the Texinfo export process is the creation of an Info file. This Info
file’s metadata has variables for category, title, and description: ‘TEXINFO_DIR_CATEGORY’,
‘TEXINFO_DIR_NAME’, and ‘TEXINFO_DIR_DESC’ keywords that establish where in the Info
hierarchy the file fits.

Here is an example that writes to the Info directory file:

#+TEXINFO_DIR_CATEGORY: Emacs

#+TEXINFO_DIR_NAME: Org Mode

#+TEXINFO_DIR_DESC: Outline-based notes management and organizer

13.14.6 Headings and sectioning structure

The Texinfo export backend uses a pre-defined scheme to convert Org headlines to equivalent
Texinfo structuring commands. A scheme like this maps top-level headlines to numbered
chapters tagged as @chapter and lower-level headlines to unnumbered chapters tagged as
@unnumbered. To override such mappings to introduce @part or other Texinfo structuring
commands, define a new class in org-texinfo-classes. Activate the new class with the
‘TEXINFO_CLASS’ keyword. When no new class is defined and activated, the Texinfo export
backend defaults to the org-texinfo-default-class.

If an Org headline’s level has no associated Texinfo structuring command, or is below
a certain threshold (see Section 13.2 [Export Settings], page 154), then the Texinfo export
backend makes it into a list item.

The Texinfo export backend makes any headline with a non-nil ‘APPENDIX’ property into
an appendix. This happens independent of the Org headline level or the ‘TEXINFO_CLASS’
keyword.

The Texinfo export backend creates a menu entry after the Org headline for each regular
sectioning structure. To override this with a shorter menu entry, use the ‘ALT_TITLE’
property (see Section 13.3 [Table of Contents], page 157). Texinfo menu entries also have
an option for a longer ‘DESCRIPTION’ property. Here’s an example that uses both to override
the default menu entry:

* Controlling Screen Display

:PROPERTIES:

:ALT_TITLE: Display

Chapter 13: Exporting 199

:DESCRIPTION: Controlling Screen Display

:END:

The text before the first headline belongs to the Top node, i.e., the node in which a reader
enters an Info manual. As such, it is expected not to appear in printed output generated
from the ‘.texi’ file. See Section “The Top Node” in texinfo, for more information.

13.14.7 Indices

The Texinfo export backend recognizes these indexing keywords if used in the Org file:
‘CINDEX’, ‘FINDEX’, ‘KINDEX’, ‘PINDEX’, ‘TINDEX’ and ‘VINDEX’. Write their value as verbatim
Texinfo code; in particular, ‘{’, ‘}’ and ‘@’ characters need to be escaped with ‘@’ if they do
not belong to a Texinfo command.

#+CINDEX: Defining indexing entries

For the backend to generate an index entry for a headline, set the ‘INDEX’ property to ‘cp’
or ‘vr’. These abbreviations come from Texinfo that stand for concept index and variable
index. The Texinfo manual has abbreviations for all other kinds of indexes. The backend
exports the headline as an unnumbered chapter or section command, and then inserts the
index after its contents.

* Concept Index

:PROPERTIES:

:INDEX: cp

:END:

13.14.8 Quoting Texinfo code

Use any of the following three methods to insert or escape raw Texinfo code:

Richard @@texinfo:@sc{@@Stallman@@texinfo:}@@ commence' GNU.

#+TEXINFO: @need800

This paragraph is preceded by...

#+BEGIN_EXPORT texinfo

@auindex Johnson, Mark

@auindex Lakoff, George

#+END_EXPORT

13.14.9 Plain lists in Texinfo export

The Texinfo export backend converts unordered and ordered lists in the Org file using the
default command ‘@itemize’.

Ordered lists are numbered when exported to Texinfo format. Such numbering obeys
any counter (see Section 2.6 [Plain Lists], page 13) in the first item of the list. The ‘:enum’
attribute also let you start the list at a specific number, or switch to a lettered list, as
illustrated here:

#+ATTR_TEXINFO: :enum A

1. Alpha

2. Bravo

3. Charlie

Chapter 13: Exporting 200

The Texinfo export backend by default converts description lists in the Org file using
the default command ‘@table’, which results in a table with two columns. To change
this behavior, set ‘:table-type’ attribute to either ‘ftable’ or ‘vtable’ value. For more
information, see Section “Two-column Tables” in texinfo.

The Texinfo export backend by default also applies a text highlight based on the de-
faults stored in org-texinfo-table-default-markup. To override the default highlight
command, specify another one with the ‘:indic’ attribute.

Org syntax is limited to one entry per list item. Nevertheless, the Texinfo export backend
can split that entry according to any text provided through the ‘:sep’ attribute. Each part
then becomes a new entry in the first column of the table.

The following example illustrates all the attributes above:

#+ATTR_TEXINFO: :table-type vtable :sep , :indic asis

- foo, bar :: This is the common text for variables foo and bar.

becomes

@vtable @asis

@item foo

@itemx bar

This is the common text for variables foo and bar.

@end table

The ‘:compact’ attribute is an alternative to the ‘:sep’ attribute, which allows writing
each entry on its own line. If this attribute is non-nil and an item in a description list has
no body but is followed by another item, then the second item is transcoded to ‘@itemx’.
This example is transcoded to the same output as above.

#+ATTR_TEXINFO: :table-type vtable :indic asis :compact t

- foo ::

- bar ::

This is the common text for variables foo and bar.

Support for this compact syntax can also be enabled for all lists in a file using the
‘compact-itemx’ export option, or globally using the variable org-texinfo-compact-

itemx.

The Texinfo export backend also supports two approaches to writing Texinfo definition
commands (see Section “Definition Commands” in texinfo). One of them uses description
lists and is described below, the other relies on special blocks (see Section 13.14.14 [Special
blocks in Texinfo export], page 202).

Items in a description list in an Org file that begin with ‘Function:’ or certain other
prefixes are converted using Texinfo definition commands. This works even if other items
in the same list do not have such a prefix; if necessary a single description list is converted
using multiple tables (such as ‘@vtable’) and definition commands (such as ‘@defun’).

- Function: org-texinfo-drawer drawer contents info ::

Transcode a DRAWER element from Org to Texinfo.

becomes

@defun org-texinfo-drawer drawer contents info ::

Transcode a DRAWER element from Org to Texinfo.

@end defun

Chapter 13: Exporting 201

The recognized prefixes are ‘Command:’, ‘Function:’, ‘Macro:’, ‘Special Form:’,
‘Variable:’ and ‘User Option:’. These are the same prefixes that appear in the Info file
for the respective definition commands. For example a ‘Function:’ item in the Org file
is converted to a ‘@defun’ command in the Texinfo file, which in turn is converted to a
definition prefixed with ‘-- Function:’ in the Info file.

As a special case the prefix ‘Key:’ is also recognized. No Texinfo definition command
exists for key bindings and the output in Info files also lacks the ‘Key:’ prefix. Even so this
special case is supported because it provides a convenient shorthand, as illustrated here:

- Key: C-c C-c (do-something) ::

This command does something.

- User Option: do-something-somehow ::

This option controls how exactly ~do-something~ does its thing.

becomes

@table @asis

@item @kbd{C-c C-c} (@code{do-something})

@kindex C-c C-c

@findex do-something

This command does something.

@end table

@defopt do-something-somehow

This option controls how exactly @code{do-something} does its thing.

@end defopt

Command in parentheses, as done above, is optional.

13.14.10 Tables in Texinfo export

When exporting tables, the Texinfo export backend uses the widest cell width in each
column. To override this and instead specify as fractions of line length, use the ‘:columns’
attribute. See example below.

#+ATTR_TEXINFO: :columns .5 .5

| a cell | another cell |

13.14.11 Images in Texinfo export

Insert a file link to the image in the Org file, and the Texinfo export backend inserts the
image. These links must have the usual supported image extensions and no descriptions.
To scale the image, use ‘:width’ and ‘:height’ attributes. For alternate text, use ‘:alt’
and specify the text using Texinfo code, as shown in the example:

#+ATTR_TEXINFO: :width 1in :alt Alternate @i{text}

[[ridt.pdf]]

13.14.12 Quotations in Texinfo export

You can write the text of a quotation within a quote block (see Section 12.1 [Paragraphs],
page 141). You may also emphasize some text at the beginning of the quotation with the
‘:tag’ attribute.

Chapter 13: Exporting 202

#+ATTR_TEXINFO: :tag Warning

#+BEGIN_QUOTE

Striking your thumb with a hammer may cause severe pain and discomfort.

#+END_QUOTE

To specify the author of the quotation, use the ‘:author’ attribute.

#+ATTR_TEXINFO: :author King Arthur

#+BEGIN_QUOTE

The Lady of the Lake, her arm clad in the purest shimmering samite,

held aloft Excalibur from the bosom of the water, signifying by divine

providence that I, Arthur, was to carry Excalibur. That is why I am

your king.

#+END_QUOTE

13.14.13 Key bindings in Texinfo export

Org does not provide any markup for key bindings that corresponds to Texinfo’s @kbd and
@key commands. One way to deal with this is to fall back to code syntax. ‘~C-x SPC~’, for
example, is transcoded to @code{C-x SPC}.

A better approach is to define and use an Org macro named kbd. To make that easier
the function org-texinfo-kbd-macro is provided, which is intended to be used like this:

#+macro: kbd (eval (org-texinfo-kbd-macro $1))

Type {{{kbd(C-c SPC)}}}.

which becomes

Type @kbd{C-c @key{SPC}}.

13.14.14 Special blocks in Texinfo export

The Texinfo export backend supports two approaches to writing Texinfo definition com-
mands. One of them is described here, the other in Section 13.14.9 [Plain lists in Texinfo
export], page 199.

The Texinfo export backend converts special blocks to commands with the same name.
It also adds any ‘:options’ attributes to the end of the command, as shown in this example:

#+ATTR_TEXINFO: :options org-org-export-to-org ...

#+BEGIN_defun

A somewhat obsessive function name.

#+END_defun

becomes

@defun org-org-export-to-org ...

A somewhat obsessive function name.

@end defun

13.14.15 A Texinfo example

Here is a more detailed example Org file. See Section “GNU Sample Texts” in texinfo for
an equivalent example using Texinfo code.

Chapter 13: Exporting 203

#+TITLE: GNU Sample {{{version}}}

#+SUBTITLE: for version {{{version}}}, {{{updated}}}

#+AUTHOR: A.U. Thor

#+EMAIL: bug-sample@gnu.org

#+OPTIONS: ':t toc:t author:t email:t

#+LANGUAGE: en

#+MACRO: version 2.0

#+MACRO: updated last updated 4 March 2014

#+TEXINFO_FILENAME: sample.info

#+TEXINFO_HEADER: @syncodeindex pg cp

#+TEXINFO_DIR_CATEGORY: Texinfo documentation system

#+TEXINFO_DIR_NAME: sample

#+TEXINFO_DIR_DESC: Invoking sample

#+TEXINFO_PRINTED_TITLE: GNU Sample

This manual is for GNU Sample (version {{{version}}},

{{{updated}}}).

* Copying

:PROPERTIES:

:COPYING: t

:END:

This manual is for GNU Sample (version {{{version}}},

{{{updated}}}), which is an example in the Texinfo documentation.

Copyright \copy 2016 Free Software Foundation, Inc.

#+BEGIN_QUOTE

Permission is granted to copy, distribute and/or modify this

document under the terms of the GNU Free Documentation License,

Version 1.3 or any later version published by the Free Software

Foundation; with no Invariant Sections, with no Front-Cover Texts,

and with no Back-Cover Texts. A copy of the license is included in

the section entitled "GNU Free Documentation License".

#+END_QUOTE

* Invoking sample

#+PINDEX: sample

#+CINDEX: invoking @command{sample}

Chapter 13: Exporting 204

This is a sample manual. There is no sample program to invoke, but

if there were, you could see its basic usage and command line

options here.

* GNU Free Documentation License

:PROPERTIES:

:APPENDIX: t

:END:

#+INCLUDE: fdl.org

* Index

:PROPERTIES:

:INDEX: cp

:END:

13.15 iCalendar Export

A large part of Org mode’s interoperability success is its ability to easily export to or import
from external applications. The iCalendar export backend takes calendar data from Org
files and exports to the standard iCalendar format.

By default, iCalendar export only includes headings that contain active timestamps or
diary sexps22.

The iCalendar export backend can also incorporate TODO entries based on the config-
uration of the org-icalendar-include-todo variable. The backend exports plain time-
stamps as ‘VEVENT’, TODO items as ‘VTODO’, and also create events from deadlines that are
in non-TODO items.

The backend uses the deadlines and scheduling dates in Org TODO items
for setting the start and due dates for the iCalendar TODO entry. Consult the
org-icalendar-use-deadline, org-icalendar-use-scheduled, and org-icalendar-

todo-unscheduled-start variables for more details.

For tags on the headline, the iCalendar export backend makes them into iCalendar
categories. To tweak the inheritance of tags and TODO states, configure the variable
org-icalendar-categories. To assign clock alarms based on time, configure the
org-icalendar-alarm-time variable.

The iCalendar format standard requires globally unique identifier—or UID—for each
entry. The iCalendar export backend creates UIDs during export. To save a copy of the
UID in the Org file set the variable org-icalendar-store-UID. The backend looks for the
‘ID’ property of the entry for reusing the same UID for subsequent exports.

Since a single Org entry can result in multiple iCalendar entries—timestamp, deadline,
scheduled item, or TODO item—Org adds prefixes to the UID, depending on which part of
the Org entry triggered the creation of the iCalendar entry. Prefixing ensures UIDs remains
unique, yet enable synchronization programs trace the connections.

22 Diary sexp events, except certain built-in types (see icalendar-export-sexp-enumerate-all), are
exported up to icalendar-export-sexp-enumeration-days into future.

Chapter 13: Exporting 205

C-c C-e c f (org-icalendar-export-to-ics)
Create iCalendar entries from the current Org buffer and store them in the
same directory, using a file extension ‘.ics’.

C-c C-e c a (org-icalendar-export-agenda-files)
Create iCalendar entries from Org files in org-agenda-files and store in a
separate iCalendar file for each Org file.

C-c C-e c c (org-icalendar-combine-agenda-files)
Create a combined iCalendar file from Org files in org-agenda-files and write
it to org-icalendar-combined-agenda-file file name.

The iCalendar export backend includes ‘SUMMARY’, ‘DESCRIPTION’, ‘LOCATION’,
‘TIMEZONE’ and ‘CLASS’ properties from the Org entries when exporting. To force the
backend to inherit the ‘LOCATION’, ‘TIMEZONE’ and ‘CLASS’ properties, configure the
org-use-property-inheritance variable.

‘SUMMARY’, ‘LOCATION’, and ‘DESCRIPTION’ properties can define multi-line summary,
location, or description using ‘<PROPERTY>+’ syntax (see Section 7.1 [Property Syntax],
page 68):

* Meeting at location with multi-line address

<2024-01-08 Mon 14:20-15:00>

:PROPERTIES:

:LOCATION: Someplace

:LOCATION+: Some Street 5

:LOCATION+: 12345 Small Town

:END:

When Org entries do not have ‘SUMMARY’, ‘DESCRIPTION’, ‘LOCATION’ and ‘CLASS’ prop-
erties, the iCalendar export backend derives the summary from the headline, and derives
the description from the body of the Org item. The org-icalendar-include-body variable
limits the maximum number of characters of the content are turned into its description.

The ‘TIMEZONE’ property can be used to specify a per-entry time zone, and is applied
to any entry with timestamp information. Time zones should be specified as per the IANA
time zone database format, e.g., ‘Asia/Almaty’. Alternately, the property value can be
‘UTC’, to force UTC time for this entry only.

The ‘CLASS’ property can be used to specify a per-entry visibility class or access restric-
tions, and is applied to any entry with class information. The iCalendar standard defines
three visibility classes:

‘PUBLIC’ The entry is publicly visible (this is the default).

‘CONFIDENTIAL’
Only a limited group of clients gets access to the event.

‘PRIVATE’ The entry can be retrieved only by its owner.

The server should treat unknown class properties the same as ‘PRIVATE’.

The exported iCalendar file can advise clients how often to check for updates. This
duration can be set globally with the org-icalendar-ttl variable, or on a per-document
basis with the ‘ICAL-TTL’ keyword. This option should be set using the iCalendar notation
for time durations; consult the docstring of org-icalendar-ttl for more details.

Chapter 13: Exporting 206

Exporting to iCalendar format depends in large part on the capabilities of the destination
application. Some are more lenient than others. Consult the Org mode FAQ for advice on
specific applications.

13.16 Other Built-in Backends

Other export backends included with Org are:

• ‘ox-man.el’: Export to a man page.

To activate such backends, either customize org-export-backends or load directly with
‘(require 'ox-man)’. On successful load, the backend adds new keys in the export dis-
patcher (see Section 13.1 [The Export Dispatcher], page 152).

Follow the comment section of such files, for example, ‘ox-man.el’, for usage and con-
figuration details.

13.17 Advanced Export Configuration

Export hooks

The export process executes two hooks before the actual exporting begins. The first hook,
org-export-before-processing-functions, runs before any expansions of macros, Babel
code, and include keywords in the buffer. The second hook, org-export-before-parsing-
functions, runs before the buffer is parsed.

Functions added to these hooks are called with a single argument: the export backend
actually used, as a symbol. You may use them for heavy duty structural modifications of
the document. For example, you can remove every headline in the buffer during export like
this:

(defun my-headline-removal (backend)

"Remove all headlines in the current buffer.

BACKEND is the export backend being used, as a symbol."

(org-map-entries

(lambda ()

(delete-region (point) (line-beginning-position 2))

;; We need to tell `org-map-entries' to not skip over heading at

;; point. Otherwise, it would continue from _next_ heading. See

;; the docstring of `org-map-entries' for details.

(setq org-map-continue-from (point)))))

(add-hook 'org-export-before-parsing-functions #'my-headline-removal)

Filters

Filters are lists of functions to be applied to certain parts for a given backend. The output
from the first function in the filter is passed on to the next function in the filter. The final
output is the output from the final function in the filter.

The Org export process has many filter sets applicable to different types of objects, plain
text, parse trees, export options, and final output formats. The filters are named after the

Chapter 13: Exporting 207

element type or object type: org-export-filter-TYPE-functions, where TYPE is the
type targeted by the filter. Valid types are:

body bold babel-call
center-block clock code
diary-sexp drawer dynamic-block
entity example-block export-block
export-snippet final-output fixed-width
footnote-definition footnote-reference headline
horizontal-rule inline-babel-call inline-src-block
inlinetask italic item
keyword latex-environment latex-fragment
line-break link node-property
options paragraph parse-tree
plain-list plain-text planning
property-drawer quote-block radio-target
section special-block src-block
statistics-cookie strike-through subscript
superscript table table-cell
table-row target timestamp
underline verbatim verse-block

Here is an example filter that replaces non-breaking spaces ~ ~ in the Org buffer with
‘~’ for the LATEX backend.

(defun my-latex-filter-nobreaks (text backend info)

"Ensure \" \" are properly handled in LaTeX export."

(when (org-export-derived-backend-p backend 'latex)

(replace-regexp-in-string " " "~" text)))

(add-to-list 'org-export-filter-plain-text-functions

'my-latex-filter-nobreaks)

A filter requires three arguments: the code to be transformed, the name of the backend,
and some optional information about the export process. The third argument can be safely
ignored. Note the use of org-export-derived-backend-p predicate that tests for latex
backend or any other backend, such as beamer, derived from latex.

Defining filters for individual files

The Org export can filter not just for backends, but also for specific files through the ‘BIND’
keyword. Here is an example with two filters; one removes brackets from time stamps, and
the other removes strike-through text. The filter functions are defined in a code block in
the same Org file, which is a handy location for debugging.

#+BIND: org-export-filter-timestamp-functions (tmp-f-timestamp)

#+BIND: org-export-filter-strike-through-functions (tmp-f-strike-through)

#+BEGIN_SRC emacs-lisp :exports results :results none

(defun tmp-f-timestamp (s backend info)

(replace-regexp-in-string "&[lg]t;\\|[][]" "" s))

(defun tmp-f-strike-through (s backend info) "")

#+END_SRC

Chapter 13: Exporting 208

Summary of the export process

Org mode export is a multistep process that works on a temporary copy of the buffer. The
export process consists of 4 major steps:

1. Process the temporary copy, making necessary changes to the buffer text;

2. Parse the buffer, converting plain Org markup into an abstract syntax tree (AST);

3. Convert the AST to text, as prescribed by the selected export backend;

4. Post-process the resulting exported text.

Process temporary copy of the source Org buffer23:

1. Execute org-export-before-processing-functions (see [Export hooks], page 206);

2. Expand ‘#+include’ keywords in the whole buffer (see Section 13.4 [Include Files],
page 158);

3. Remove commented subtrees in the whole buffer (see Section 13.6 [Comment Lines],
page 160);

4. Replace macros in the whole buffer (see Section 13.5 [Macro Replacement], page 159),
unless org-export-replace-macros is nil;

5. When org-export-use-babel is non-nil (default), process code blocks:

• Leave code blocks inside archived subtrees (see Section 9.2.2 [Internal archiving],
page 98) as is;

• Evaluate all the other code blocks according to code block headers (see [Limit code
block evaluation], page 240);

• Remove code, results of evaluation, both, or neither according to ‘:exports’ header
argument (see Section 16.7 [Exporting Code Blocks], page 247).

Parse the temporary buffer, creating AST:

1. Execute org-export-before-parsing-functions (see [Export hooks], page 206). The
hook functions may still modify the buffer;

2. Calculate export option values according to subtree-specific export settings, in-buffer
keywords, ‘#+BIND’ keywords, and buffer-local and global customization. The whole
buffer is considered;

3. When org-org-with-cite-processors is non-nil (default), determine contributing
bibliographies and record them into export options (see Section 15.1 [Citations],
page 224). The whole buffer is considered;

4. Execute org-export-filter-options-functions;

5. Parse the accessible portion of the temporary buffer to generate an AST. The AST is
a nested list of lists representing Org syntax elements (see Org Element API for more
details):

(org-data ...

(heading

23 Unless otherwise specified, each step of the export process only operates on the accessible portion of
the buffer. When subtree export is selected (see Section 13.1 [The Export Dispatcher], page 152), the
buffer is narrowed to the body of the selected subtree, so that the rest of the buffer text, except export
keywords, does not contribute to the export output.

https://orgmode.org/worg/dev/org-element-api.html

Chapter 13: Exporting 209

(section

(paragraph (plain-text) (bold (plain-text))))

(heading)

(heading (section ...))))

Past this point, modifications to the temporary buffer no longer affect the export; Org
export works only with the AST;

6. Remove elements that are not exported from the AST:

• Headings according to ‘SELECT_TAGS’ and ‘EXCLUDE_TAGS’ export keywords;
‘task’, ‘inline’, ‘arch’ export options (see Section 13.2 [Export Settings],
page 154);

• Comments;

• Clocks, drawers, fixed-width environments, footnotes, LATEX environments and
fragments, node properties, planning lines, property drawers, statistics cookies,
timestamps, etc. according to ‘#+OPTIONS’ keyword (see Section 13.2 [Export
Settings], page 154);

• Table rows containing width and alignment markers, unless the selected export
backend changes :with-special-rows export option to non-nil (see Section 3.2
[Column Width and Alignment], page 22);

• Table columns containing recalc marks (see Section 3.5.10 [Advanced features],
page 34).

7. Expand environment variables in file link AST nodes according to the ‘expand-links’
export option (see Section 13.2 [Export Settings], page 154);

8. Execute org-export-filter-parse-tree-functions. These functions can modify
the AST by side effects;

9. When org-org-with-cite-processors is non-nil (default), replace citation AST
nodes and ‘#+print_bibliography’ keyword AST nodes as prescribed by the selected
citation export processor (see Section 15.2 [Citation export processors], page 225).

Convert the AST to text by traversing the AST nodes, depth-first:

1. Convert the leaf nodes (without children) to text as prescribed by “transcoders” in the
selected export backend24;

2. Pass the converted nodes through the corresponding export filters (see [Filters],
page 206);

3. Concatenate all the converted child nodes to produce parent node contents;

4. Convert the nodes with children to text, passing the nodes themselves and their ex-
ported contents to the corresponding transcoders and then to the export filters (see
[Filters], page 206).

Post-process the exported text:

1. Post-process the converted AST, as prescribed by the export backend.25 This step
usually adds generated content (like Table of Contents) to the exported text;

24 See transcoders and :translate-alist in the docstrings of org-export-define-backend and
org-export-define-derived-backend.

25 See inner-template in the docstring of org-export-define-backend.

Chapter 13: Exporting 210

2. Execute org-export-filter-body-functions;

3. Unless body-only export is selected (see Section 13.1 [The Export Dispatcher],
page 152), add the necessary metadata to the final document, as prescribed by the
export backend. Examples: Document author/title; HTML headers/footers; LATEX
preamble;

4. When org-org-with-cite-processors is non-nil (default), add bibliography meta-
data, as prescribed by the citation export processor;

5. Execute org-export-filter-final-output-functions.

Extending an existing backend

Some parts of the conversion process can be extended for certain elements to introduce a
new or revised translation. That is how the HTML export backend was extended to handle
Markdown format. The extensions work seamlessly so any aspect of filtering not done by
the extended backend is handled by the original backend. Of all the export customization
in Org, extending is very powerful as it operates at the parser level.

For this example, make the ascii backend display the language used in a source code
block. Also make it display only when some attribute is non-nil, like the following:

#+ATTR_ASCII: :language t

Then extend ASCII backend with a custom “my-ascii” backend.

(defun my-ascii-src-block (src-block contents info)

"Transcode a SRC-BLOCK element from Org to ASCII.

CONTENTS is nil. INFO is a plist used as a communication

channel."

(if (not (org-export-read-attribute :attr_ascii src-block :language))

(org-export-with-backend 'ascii src-block contents info)

(concat

(format ",--[%s]--\n%s`----"

(org-element-property :language src-block)

(replace-regexp-in-string

"^" "| "

(org-element-normalize-string

(org-export-format-code-default src-block info)))))))

(org-export-define-derived-backend 'my-ascii 'ascii

:translate-alist '((src-block . my-ascii-src-block)))

The my-ascii-src-block function looks at the attribute above the current element.
If not true, hands over to ascii backend. If true, which it is in this example, it creates
a box around the code and leaves room for the inserting a string for language. The last
form creates the new backend that springs to action only when translating src-block type
elements.

To use the newly defined backend, evaluate the following from an Org buffer:

(org-export-to-buffer 'my-ascii "*Org MY-ASCII Export*")

Further steps to consider would be an interactive function, self-installing an item in the
export dispatcher menu, and other user-friendly improvements. See https://orgmode.

org/worg/dev/org-export-reference.html for more details.

https://orgmode.org/worg/dev/org-export-reference.html
https://orgmode.org/worg/dev/org-export-reference.html

Chapter 13: Exporting 211

13.18 Export Region

Some export backends include commands to convert a region of Org formatted text to
another format, such as HTML or LATEX. The conversion replaces the original source. Here
are such commands:

org-export-region-to-ascii

Convert the selected region into ASCII.

org-export-region-to-utf8

Convert the selected region into UTF-8.

org-export-region-to-html

Convert the selected region into HTML.

org-export-region-to-latex

Convert the selected region into LATEX.

org-export-region-to-texinfo

Convert the selected region into Texinfo.

org-export-region-to-md

Convert the selected region into Markdown.

The in-place conversion is particularly handy for quick conversion of tables and lists in
non-Org buffers. For example, in an HTML buffer, write a list in Org syntax, select it, and
convert it to HTML with M-x org-html-convert-region-to-html.

Chapter 14: Publishing 212

14 Publishing

Org includes a publishing management system that allows you to configure automatic
HTML conversion of projects composed of interlinked Org files. You can also configure
Org to automatically upload your exported HTML pages and related attachments, such as
images and source code files, to a web server.

You can also use Org to convert files into PDF, or even combine HTML and PDF
conversion so that files are available in both formats on the server.

Publishing has been contributed to Org by David O’Toole.

14.1 Configuration

Publishing needs significant configuration to specify files, destination and many other prop-
erties of a project.

14.1.1 The variable org-publish-project-alist

Publishing is configured almost entirely through setting the value of one variable, called
org-publish-project-alist. Each element of the list configures one project, and may be
in one of the two following forms:

("project-name" :property value :property value ...)

i.e., a well-formed property list with alternating keys and values, or:

("project-name" :components ("project-name" "project-name" ...))

In both cases, projects are configured by specifying property values. A project defines
the set of files that are to be published, as well as the publishing configuration to use when
publishing those files. When a project takes the second form listed above, the individual
members of the :components property are taken to be sub-projects, which group together
files requiring different publishing options. When you publish such a “meta-project”, all
the components are also published, in the sequence given.

14.1.2 Sources and destinations for files

Most properties are optional, but some should always be set. In particular, Org needs to
know where to look for source files, and where to put published files.

:base-directory

Directory containing publishing source files.

:publishing-directory

Directory where output files are published. You can directly publish to a web
server using a file name syntax appropriate for the Emacs tramp package. Or
you can publish to a local directory and use external tools to upload your
website (see Section 14.2 [Uploading Files], page 220).

:preparation-function

Function or list of functions to be called before starting the publishing process,
for example, to run ‘make’ for updating files to be published. Each preparation
function is called with a single argument, the project property list.

Chapter 14: Publishing 213

:completion-function

Function or list of functions called after finishing the publishing process, for
example, to change permissions of the resulting files. Each completion function
is called with a single argument, the project property list.

14.1.3 Selecting files

By default, all files with extension ‘.org’ in the base directory are considered part of the
project. This can be modified by setting the following properties

:base-extension

Extension—without the dot—of source files. This actually is a regular expres-
sion. Set this to the symbol any if you want to get all files in :base-directory,
even without extension.

:exclude Regular expression to match file names that should not be published, even
though they have been selected on the basis of their extension.

:include List of files to be included regardless of :base-extension and :exclude.

:recursive

Non-nil means, check base-directory recursively for files to publish.

14.1.4 Publishing action

Publishing means that a file is copied to the destination directory and possibly transformed
in the process. The default transformation is to export Org files as HTML files, and this
is done by the function org-html-publish-to-html which calls the HTML exporter (see
Section 13.9 [HTML Export], page 166). But you can also publish your content as PDF
files using org-latex-publish-to-pdf, or as ASCII, Texinfo, etc., using the corresponding
functions.

If you want to publish the Org file as an ‘.org’ file but with archived, commented, and tag-
excluded trees removed, use org-org-publish-to-org. This produces ‘file.org’ and puts
it in the publishing directory. If you want a htmlized version of this file, set the parameter
:htmlized-source to t. It produces ‘file.org.html’ in the publishing directory1.

Other files like images only need to be copied to the publishing destination; for this
you can use org-publish-attachment. For non-Org files, you always need to specify the
publishing function:

:publishing-function

Function executing the publication of a file. This may also be a list of functions,
which are all called in turn.

:htmlized-source

Non-nil means, publish htmlized source.

The function must accept three arguments: a property list containing at least a
:publishing-directory property, the name of the file to be published, and the path
to the publishing directory of the output file. It should take the specified file, make the
necessary transformation, if any, and place the result into the destination folder.

1 If the publishing directory is the same as the source directory, ‘file.org’ is exported as ‘file.org.org’,
so you probably do not want to do this.

Chapter 14: Publishing 214

14.1.5 Options for the exporters

The property list can be used to set many export options for the HTML and LATEX exporters.
In most cases, these properties correspond to user variables in Org. The table below lists
these properties along with the variable they belong to. See the documentation string for
the respective variable for details.

When a property is given a value in org-publish-project-alist, its setting overrides
the value of the corresponding user variable, if any, during publishing. Options set within
a file (see Section 13.2 [Export Settings], page 154), however, override everything.

Generic properties

:author user-full-name

:email user-mail-address

:language org-export-default-language

:select-tags org-export-select-tags

:exclude-tags org-export-exclude-tags

:creator org-export-creator-string

:headline-levels org-export-headline-levels

:preserve-breaks org-export-preserve-breaks

:section-numbers org-export-with-section-numbers

:time-stamp-file org-export-timestamp-file

:with-archived-trees org-export-with-archived-trees

:with-author org-export-with-author

:expand-links org-export-expand-links

:with-broken-links org-export-with-broken-links

:with-clocks org-export-with-clocks

:with-creator org-export-with-creator

:with-date org-export-with-date

:with-drawers org-export-with-drawers

:with-email org-export-with-email

:with-emphasize org-export-with-emphasize

:with-entities org-export-with-entities

:with-fixed-width org-export-with-fixed-width

:with-footnotes org-export-with-footnotes

:with-inlinetasks org-export-with-inlinetasks

:with-latex org-export-with-latex

:with-planning org-export-with-planning

:with-priority org-export-with-priority

:with-properties org-export-with-properties

:with-smart-quotes org-export-with-smart-quotes

:with-special-strings org-export-with-special-strings

:with-statistics-cookies org-export-with-statistics-cookies

:with-sub-superscript org-export-with-sub-superscripts

:with-toc org-export-with-toc

:with-tables org-export-with-tables

:with-tags org-export-with-tags

:with-tasks org-export-with-tasks

Chapter 14: Publishing 215

:with-timestamps org-export-with-timestamps

:with-title org-export-with-title

:with-todo-keywords org-export-with-todo-keywords

:with-cite-processors org-export-process-citations

:cite-export org-cite-export-processors

ASCII specific properties

:ascii-bullets org-ascii-bullets

:ascii-caption-above org-ascii-caption-above

:ascii-charset org-ascii-charset

:ascii-global-margin org-ascii-global-margin

:ascii-format-drawer-function org-ascii-format-drawer-function

:ascii-format-inlinetask-function org-ascii-format-inlinetask-function

:ascii-headline-spacing org-ascii-headline-spacing

:ascii-indented-line-width org-ascii-indented-line-width

:ascii-inlinetask-width org-ascii-inlinetask-width

:ascii-inner-margin org-ascii-inner-margin

:ascii-links-to-notes org-ascii-links-to-notes

:ascii-list-margin org-ascii-list-margin

:ascii-paragraph-spacing org-ascii-paragraph-spacing

:ascii-quote-margin org-ascii-quote-margin

:ascii-table-keep-all-vertical-lines org-ascii-table-keep-all-vertical-lines

:ascii-table-use-ascii-art org-ascii-table-use-ascii-art

:ascii-table-widen-columns org-ascii-table-widen-columns

:ascii-text-width org-ascii-text-width

:ascii-underline org-ascii-underline

:ascii-verbatim-format org-ascii-verbatim-format

Beamer specific properties

:headline-levels org-beamer-frame-level

:beamer-subtitle-format org-beamer-subtitle-format

:beamer-column-view-format org-beamer-column-view-format

:beamer-theme org-beamer-theme

:beamer-environments-extra org-beamer-environments-extra

:beamer-frame-default-options org-beamer-frame-default-options

:beamer-outline-frame-options org-beamer-outline-frame-options

:beamer-outline-frame-title org-beamer-outline-frame-title

HTML specific properties

:html-doctype org-html-doctype

:html-container org-html-container-element

:html-content-class org-html-content-class

:html-html5-fancy org-html-html5-fancy

:html-link-use-abs-url org-html-link-use-abs-url

:html-link-home org-html-link-home

:html-link-up org-html-link-up

Chapter 14: Publishing 216

:html-equation-reference-format org-html-equation-reference-format

:html-postamble org-html-postamble

:html-preamble org-html-preamble

:html-head org-html-head

:html-head-extra org-html-head-extra

:html-head-include-default-style org-html-head-include-default-style

:html-head-include-scripts org-html-head-include-scripts

:html-allow-name-attribute-in-anchors org-html-allow-name-attribute-in-anchors

:html-divs org-html-divs

:html-checkbox-type org-html-checkbox-type

:html-extension org-html-extension

:html-footnote-format org-html-footnote-format

:html-footnote-separator org-html-footnote-separator

:html-footnotes-section org-html-footnotes-section

:html-format-drawer-function org-html-format-drawer-function

:html-format-headline-function org-html-format-headline-function

:html-format-inlinetask-function org-html-format-inlinetask-function

:html-home/up-format org-html-home/up-format

:html-indent org-html-indent

:html-infojs-options org-html-infojs-options

:html-infojs-template org-html-infojs-template

:html-inline-image-rules org-html-inline-image-rules

:html-link-org-files-as-html org-html-link-org-files-as-html

:html-mathjax-options org-html-mathjax-options

:html-mathjax-template org-html-mathjax-template

:html-metadata-timestamp-format org-html-metadata-timestamp-format

:html-postamble-format org-html-postamble-format

:html-preamble-format org-html-preamble-format

:html-prefer-user-labels org-html-prefer-user-labels

:html-self-link-headlines org-html-self-link-headlines

:html-table-align-individual-fields org-html-table-align-individual-fields

:html-table-caption-above org-html-table-caption-above

:html-table-data-tags org-html-table-data-tags

:html-table-header-tags org-html-table-header-tags

:html-table-use-header-tags-for-first-column org-html-table-use-header-tags-for-first-column

:html-tag-class-prefix org-html-tag-class-prefix

:html-text-markup-alist org-html-text-markup-alist

:html-todo-kwd-class-prefix org-html-todo-kwd-class-prefix

:html-toplevel-hlevel org-html-toplevel-hlevel

:html-use-infojs org-html-use-infojs

:html-validation-link org-html-validation-link

:html-viewport org-html-viewport

:html-inline-images org-html-inline-images

:html-table-attributes org-html-table-default-attributes

:html-table-row-open-tag org-html-table-row-open-tag

:html-table-row-close-tag org-html-table-row-close-tag

:html-xml-declaration org-html-xml-declaration

Chapter 14: Publishing 217

:html-wrap-src-lines org-html-wrap-src-lines

:html-klipsify-src org-html-klipsify-src

:html-klipse-css org-html-klipse-css

:html-klipse-js org-html-klipse-js

:html-klipse-selection-script org-html-klipse-selection-script

:creator org-html-creator-string

:with-latex org-html-with-latex

LATEX specific properties

:latex-class org-latex-default-class

:latex-active-timestamp-format org-latex-active-timestamp-format

:latex-caption-above org-latex-caption-above

:latex-classes org-latex-classes

:latex-default-figure-position org-latex-default-figure-position

:latex-default-table-environment org-latex-default-table-environment

:latex-default-quote-environment org-latex-default-quote-environment

:latex-default-table-mode org-latex-default-table-mode

:latex-default-footnote-command org-latex-default-footnote-command

:latex-diary-timestamp-format org-latex-diary-timestamp-format

:latex-engraved-options org-latex-engraved-options

:latex-engraved-preamble org-latex-engraved-preamble

:latex-engraved-theme org-latex-engraved-theme

:latex-footnote-defined-format org-latex-footnote-defined-format

:latex-footnote-separator org-latex-footnote-separator

:latex-format-drawer-function org-latex-format-drawer-function

:latex-format-headline-function org-latex-format-headline-function

:latex-format-inlinetask-function org-latex-format-inlinetask-function

:latex-hyperref-template org-latex-hyperref-template

:latex-image-default-scale org-latex-image-default-scale

:latex-image-default-height org-latex-image-default-height

:latex-image-default-option org-latex-image-default-option

:latex-image-default-width org-latex-image-default-width

:latex-images-centered org-latex-images-centered

:latex-inactive-timestamp-format org-latex-inactive-timestamp-format

:latex-inline-image-rules org-latex-inline-image-rules

:latex-link-with-unknown-path-format org-latex-link-with-unknown-path-format

:latex-src-block-backend org-latex-src-block-backend

:latex-listings-langs org-latex-listings-langs

:latex-listings-options org-latex-listings-options

:latex-listings-src-omit-language org-latex-listings-src-omit-language

:latex-minted-langs org-latex-minted-langs

:latex-minted-options org-latex-minted-options

:latex-prefer-user-labels org-latex-prefer-user-labels

:latex-subtitle-format org-latex-subtitle-format

:latex-subtitle-separate org-latex-subtitle-separate

:latex-table-scientific-notation org-latex-table-scientific-notation

Chapter 14: Publishing 218

:latex-tables-booktabs org-latex-tables-booktabs

:latex-tables-centered org-latex-tables-centered

:latex-text-markup-alist org-latex-text-markup-alist

:latex-title-command org-latex-title-command

:latex-toc-command org-latex-toc-command

:latex-compiler org-latex-compiler

Markdown specific properties

:md-footnote-format org-md-footnote-format

:md-footnotes-section org-md-footnotes-section

:md-headline-style org-md-headline-style

:md-toplevel-hlevel org-md-toplevel-hlevel

ODT specific properties

:odt-styles-file org-odt-styles-file

:odt-content-template-file org-odt-content-template-file

:odt-display-outline-level org-odt-display-outline-level

:odt-fontify-srcblocks org-odt-fontify-srcblocks

:odt-format-drawer-function org-odt-format-drawer-function

:odt-format-headline-function org-odt-format-headline-function

:odt-format-inlinetask-function org-odt-format-inlinetask-function

:odt-inline-formula-rules org-odt-inline-formula-rules

:odt-inline-image-rules org-odt-inline-image-rules

:odt-pixels-per-inch org-odt-pixels-per-inch

:odt-table-styles org-odt-table-styles

:odt-use-date-fields org-odt-use-date-fields

:with-latex org-odt-with-latex

Texinfo specific properties

:texinfo-class org-texinfo-default-class

:texinfo-classes org-texinfo-classes

:texinfo-format-headline-function org-texinfo-format-headline-function

:texinfo-node-description-column org-texinfo-node-description-column

:texinfo-active-timestamp-format org-texinfo-active-timestamp-format

:texinfo-inactive-timestamp-format org-texinfo-inactive-timestamp-format

:texinfo-diary-timestamp-format org-texinfo-diary-timestamp-format

:texinfo-link-with-unknown-path-format org-texinfo-link-with-unknown-path-format

:texinfo-tables-verbatim org-texinfo-tables-verbatim

:texinfo-table-scientific-notation org-texinfo-table-scientific-notation

:texinfo-table-default-markup org-texinfo-table-default-markup

:texinfo-text-markup-alist org-texinfo-text-markup-alist

:texinfo-format-drawer-function org-texinfo-format-drawer-function

:texinfo-format-inlinetask-function org-texinfo-format-inlinetask-function

:texinfo-compact-itemx org-texinfo-compact-itemx

:with-latex org-texinfo-with-latex

Chapter 14: Publishing 219

14.1.6 Publishing links

To create a link from one Org file to another, you would use something like
‘[[file:foo.org][The foo]]’ or simply ‘[[file:foo.org]]’ (see Section 4.4 [External
Links], page 41). When published, this link becomes a link to ‘foo.html’. You can thus
interlink the pages of your “Org web” project and the links will work as expected when
you publish them to HTML. If you also publish the Org source file and want to link to it,
use an ‘http’ link instead of a ‘file:’ link, because ‘file’ links are converted to link to
the corresponding ‘.html’ file.

Links to encrypted Org files, like ‘[[file:foo.org.gpg]]’ are also supported.

You may also link to related files, such as images. Provided you are careful with relative
file names, and provided you have also configured Org to upload the related files, these
links will work too. See Section 14.3.2 [Complex example], page 221, for an example of this
usage.

Links between published documents can contain some search options (see Section 4.8
[Search Options], page 47), which will be resolved to the appropriate location in the linked
file. For example, once published to HTML, the following links all point to a dedicated
anchor in ‘foo.html’.

[[file:foo.org::*heading]]

[[file:foo.org::#custom-id]]

[[file:foo.org::target]]

14.1.7 Generating a sitemap

The following properties may be used to control publishing of a map of files for a given
project.

:auto-sitemap

When non-nil, publish a sitemap during org-publish-current-project or
org-publish-all.

:sitemap-filename

Filename for output of sitemap. Defaults to ‘sitemap.org’, which becomes
‘sitemap.html’.

:sitemap-title

Title of sitemap page. Defaults to name of file.

:sitemap-style

Can be list (site-map is just an itemized list of the titles of the files involved)
or tree (the directory structure of the source files is reflected in the site-map).
Defaults to tree.

:sitemap-format-entry

With this option one can tell how a site-map entry is formatted in the site-map.
It is a function called with three arguments: the file or directory name relative
to base directory of the project, the site-map style and the current project. It
is expected to return a string. Default value turns file names into links and
use document titles as descriptions. For specific formatting needs, one can use
org-publish-find-date, org-publish-find-title and org-publish-find-

property, to retrieve additional information about published documents.

Chapter 14: Publishing 220

:sitemap-function

Plug-in function to use for generation of the sitemap. It is called with two
arguments: the title of the site-map and a representation of the files and direc-
tories involved in the project as a nested list, which can further be transformed
using org-list-to-generic, org-list-to-subtree and alike. Default value
generates a plain list of links to all files in the project.

:sitemap-sort-folders

Where folders should appear in the sitemap. Set this to first (default) or
last to display folders first or last, respectively. When set to ignore, folders
are ignored altogether. Any other value mixes files and folders. This variable
has no effect when site-map style is tree.

:sitemap-sort-files

How the files are sorted in the site map. Set this to alphabetically (default),
chronologically or anti-chronologically. chronologically sorts the files
with older date first while anti-chronologically sorts the files with newer
date first. alphabetically sorts the files alphabetically. The date of a file is
retrieved with org-publish-find-date.

:sitemap-ignore-case

Should sorting be case-sensitive? Default nil.

14.1.8 Generating an index

Org mode can generate an index across the files of a publishing project.

:makeindex

When non-nil, generate in index in the file ‘theindex.org’ and publish it as
‘theindex.html’.

The file is created when first publishing a project with the :makeindex set. The file
only contains a statement ‘#+INCLUDE: "theindex.inc"’. You can then build around this
include statement by adding a title, style information, etc.

Index entries are specified with ‘INDEX’ keyword. An entry that contains an exclamation
mark creates a sub item.

*** Curriculum Vitae

#+INDEX: CV

#+INDEX: Application!CV

14.2 Uploading Files

For those people already utilizing third party sync tools such as Rsync or Unison, it might
be preferable not to use the built-in remote publishing facilities of Org mode which rely
heavily on Tramp. Tramp, while very useful and powerful, tends not to be so efficient for
multiple file transfer and has been known to cause problems under heavy usage.

Specialized synchronization utilities offer several advantages. In addition to timestamp
comparison, they also do content and permissions/attribute checks. For this reason you
might prefer to publish your web to a local directory—possibly even in place with your Org
files—and then use Unison or Rsync to do the synchronization with the remote host.

Chapter 14: Publishing 221

Since Unison, for example, can be configured as to which files to transfer to a certain
remote destination, it can greatly simplify the project publishing definition. Simply keep all
files in the correct location, process your Org files with org-publish and let the synchro-
nization tool do the rest. You do not need, in this scenario, to include attachments such as
JPG, CSS or PNG files in the project definition since the third-party tool syncs them.

Publishing to a local directory is also much faster than to a remote one, so that you can
afford more easily to republish entire projects. If you set org-publish-use-timestamps-
flag to nil, you gain the main benefit of re-including any changed external files such as
source example files you might include with ‘INCLUDE’ keyword. The timestamp mechanism
in Org is not smart enough to detect if included files have been modified.

14.3 Sample Configuration

Below we provide two example configurations. The first one is a simple project publishing
only a set of Org files. The second example is more complex, with a multi-component
project.

14.3.1 Example: simple publishing configuration

This example publishes a set of Org files to the ‘public_html’ directory on the local ma-
chine.

(setq org-publish-project-alist

'(("org"

:base-directory "~/org/"

:publishing-function org-html-publish-to-html

:publishing-directory "~/public_html"

:section-numbers nil

:with-toc nil

:html-head "<link rel=\"stylesheet\"

href=\"../other/mystyle.css\"

type=\"text/css\"/>")))

14.3.2 Example: complex publishing configuration

This more complicated example publishes an entire website, including Org files converted
to HTML, image files, Emacs Lisp source code, and style sheets. The publishing directory
is remote and private files are excluded.

To ensure that links are preserved, care should be taken to replicate your directory
structure on the web server, and to use relative file paths. For example, if your Org files are
kept in ‘~/org/’ and your publishable images in ‘~/images/’, you would link to an image
with

file:../images/myimage.png

On the web server, the relative path to the image should be the same. You can accomplish
this by setting up an ‘images/’ folder in the right place on the web server, and publishing
images to it.

(setq org-publish-project-alist

`(("orgfiles"

:base-directory "~/org/"

Chapter 14: Publishing 222

:base-extension "org"

:publishing-directory "/ssh:user@host:~/html/notebook/"

:publishing-function org-html-publish-to-html

:exclude ,(rx (or "PrivateFile.org" (seq line-start "private/"))) ;; regexp

:headline-levels 3

:section-numbers nil

:with-toc nil

:html-head "<link rel=\"stylesheet\"

href=\"../other/mystyle.css\" type=\"text/css\"/>"

:html-preamble t)

("images"

:base-directory "~/images/"

:base-extension "jpg\\|gif\\|png"

:publishing-directory "/ssh:user@host:~/html/images/"

:publishing-function org-publish-attachment)

("other"

:base-directory "~/other/"

:base-extension "css\\|el"

:publishing-directory "/ssh:user@host:~/html/other/"

:publishing-function org-publish-attachment)

("website" :components ("orgfiles" "images" "other"))))

14.4 Triggering Publication

Once properly configured, Org can publish with the following commands:

C-c C-e P x (org-publish)
Prompt for a specific project and publish all files that belong to it.

C-c C-e P p (org-publish-current-project)
Publish the project containing the current file.

C-c C-e P f (org-publish-current-file)
Publish only the current file.

C-c C-e P a (org-publish-all)
Publish every project.

Org uses timestamps to track when a file has changed. The above functions normally only
publish changed files. You can override this and force publishing of all files by giving a prefix
argument to any of the commands above, or by customizing the variable org-publish-

use-timestamps-flag. This may be necessary in particular if files include other files via
‘SETUPFILE’ or ‘INCLUDE’ keywords.

Chapter 15: Citation handling 223

15 Citation handling

While links (see Chapter 4 [Hyperlinks], page 39) are often sufficient to refer to external
or internal information from Org, they have their limitations when referring to multiple
targets or typesetting printed publications.

Org mode provides a more sophisticated markup to “cite” external resources. For ex-
ample, consider the following Org mode snippet

#+bibliography: citationdata.bib

Org mode is used by various communities [cite:teaching: @orgteaching;

and TeX: @orgtex]. [cite/author/caps:@orgtex] uses Org mode to simplify

writing scientific publications, while [cite/author/caps:@orgteaching]

experiment with Org babel to improve teaching.

#+print_bibliography:

Org mode will gather citation metadata from the ‘#+bibliography’ database and use
it to typeset the exported document in arbitrary formats. For example, the snippet below
shows ASCII export output.

Org mode is used by various communities (teaching: Birkenkrahe, Marcus,

2023, and TeX: Somma, Emmanuele F, 2023). Somma, Emmanuele F uses Org

mode to simplify writing scientific publications, while Birkenkrahe,

Marcus experiment with Org babel to improve teaching.

Birkenkrahe, Marcus (2023). /Teaching Data Science with Literate

Programming Tools/, MDPI.

Somma, Emmanuele F (2023). /Simplifying LaTeX with ORG-mode in Emacs/,

TUGboat volume.

In addition to export, users can use completion to search and insert citations from the
bibliography (via org-cite-insert). Citations also act like ordinary links, jumping to the
citation metadata when “following” them using org-open-at-point.

You can customize every aspect (capability) of citation handling using built-in or external
citation processors.

Org mode ships with several built-in citation processors tailored to work with LATEX
export and BibTEX bibliographies (‘bibtex’, ‘biblatex’, and ‘natbib’ processors), or with
more generic formats described using Citation Style Language (‘csl’ processor). The de-
fault citation processor is ‘basic’ - it works with arbitrary export formats and recognizes
both BibTEX and CSL bibliographies. More citation processors are distributed as Emacs
packages.

Multiple citation processors can be mixed to meet your preferences. Configure
org-cite-activate-processor, org-cite-follow-processor, org-cite-insert-

processor, and org-cite-export-processors to select which processor to use for every
citation capability:

activate Fontification, tooltip preview, etc.

https://citationstyles.org/

Chapter 15: Citation handling 224

follow At-point actions on citations via org-open-at-point.

insert Add and edit citations via org-cite-insert.

export Via different libraries for different target formats.

15.1 Citations

Before adding citations, first set one-or-more bibliographies, either globally with org-cite-

global-bibliography, or locally using one or more “bibliography” keywords.

#+bibliography: SomeFile.bib

#+bibliography: /some/other/file.json

#+bibliography: "/some/file/with spaces/in its name.bib"

Org mode uses all the local and global bibliographies combined to search for citation
keys.

One can then insert and edit citations using org-cite-insert, called with C-c C-x @.

A citation requires one or more citation key(s), elements identifying a reference in the
bibliography.

• Each citation is surrounded by brackets and uses the ‘cite’ type.

• Each key starts with the character ‘@’.

[cite:@key]

• Each key can be qualified by a prefix (e.g. “see ”) and/or a suffix (e.g. “p. 123”), giving
information useful or necessary for the comprehension of the citation but not included
in the reference.

[cite:see @key p. 123]

• A single citation can cite more than one reference ; the keys are separated by semicolons
; the formatting of such citation groups is specified by the style.

[cite:@key1;@key2;@key3]

• One can also specify a stylistic variation for the citations by inserting a ‘/’ and a style
name between the ‘cite’ keyword and the colon; this usually makes sense only for the
author-year styles.

[cite/style:common prefix ;prefix @key suffix; ... ; common suffix]

When ‘style’ is not specified, one of the two default styles are used

• either the default style specified in the ‘CITE_EXPORT’ keyword (see Section 15.2
[Citation export processors], page 225)

#+cite_export: basic numeric noauthor/bare

[cite:@key] is the same as [cite/noauthor/bare:@key]

• or, if ‘CITE_EXPORT’ is not set, using the default ‘nil’ style

[cite:@key] is the same as [cite/nil:@key]

The only mandatory elements are:

• The ‘cite’ keyword and the colon.

• The ‘@’ character immediately preceding each key.

• The brackets surrounding the citation(s) (group).

Chapter 15: Citation handling 225

15.2 Citation export processors

Org currently includes the following export processors:

• Two processors can export to a variety of formats, including ‘latex’ (and therefore
‘pdf’), ‘html’, ‘odt’ and plain (UTF8) text:

basic a basic export processor, well adapted to situations where backward com-
patibility is not a requirement and formatting needs are minimal;

csl this export processor uses format files written in Citation Style Language
via citeproc-el;

• In contrast, three other processors target LATEX and LATEX-derived formats exclusively:

bibtex this export processor uses BibTEX, the historical bibliographic processor
used with LATEX, thus allowing the use of data and style files compatible
with this processor (including a large number of publishers’ styles). It only
supports LATEX’s ‘\cite’ and ‘\nocite’ commands.

natbib as with the ‘bibtex’ processor, but using the LATEX package ‘natbib’,
allowing more stylistic variants that LATEX’s ‘\cite’ command.

biblatex this backend allows the use of data and formats prepared for BibLATEX, an
alternate bibliographic processor used with LATEX, which overcomes some
serious BibTEX limitations, but has not (yet?) been widely adopted by
publishers.

The ‘CITE_EXPORT’ keyword specifies the export processor, citation style, and bibliogra-
phy style; for example (all arguments are optional)

#+cite_export: [export processor name] [bibliography style] [default citation style]

#+cite_export: basic author-year author

specifies the ‘basic’ export processor with citations inserted as author’s name and references
indexed by author’s names and year;

#+cite_export: csl /some/path/to/vancouver-brackets.csl

specifies the ‘csl’ processor and CSL style, which in this case defines numeric citations
and numeric references according to the ‘Vancouver’ specification (as style used in many
medical journals), following a typesetting variation putting citations between brackets;

#+cite_export: natbib kluwer

specifies the ‘natbib’ export processor with a label citation style conformant to the Harvard
style and the specification of the Wolkers-Kluwer publisher; since it relies on the bibtex

processor of your LATEX installation, it won’t export to anything but PDF.

#+cite_export: biblatex numeric,backend=bibtex

specifies the ‘biblatex’ export processor with the default ‘numeric’ style and the ‘bibtex’
backend. Always define the style first and then the rest of load-time options for the
‘biblatex’ package. Alternatively, you can use the key=val,key=val format for the options
as documented in the ‘biblatex’ package documentation:

#+cite_export: biblatex backend=bibtex,style=numeric

The org-cite-biblatex-options variable in your Emacs configuration uses this for-
mat. It will only export to PDF, since it relies on the biblatex processor of your LATEX
installation.

https://en.wikipedia.org/wiki/Citation_Style_Language
https://github.com/andras-simonyi/citeproc-el

Chapter 15: Citation handling 226

15.3 Bibliography printing

The ‘PRINT_BIBLIOGRAPHY’ keyword specifies where the bibliography should be printed
(note the colon):

#+print_bibliography:

The bibliography printed by the LATEX-based export processors ‘bibtex’, ‘natbib’ and
‘biblatex’ has a chapter or section heading by default, while the ‘basic’ and ‘csl’ proces-
sors print the list of bibliography entries without a heading.

A document may contain more than one ‘PRINT_BIBLIOGRAPHY’ keywords. Each of the
keywords will trigger printing the bibliography.

The keywords can be used with or without additional options. Options can be used, for
example, to print only entries that belong to a certain category or to control formatting. The
set of supported ‘PRINT_BIBLIOGRAPHY’ options and their interpretation varies between the
different citation export processors. Some export processors do not support passing options.

15.3.1 Bibliography options in the ‘biblatex’ and ‘csl’ export
processors

The ‘biblatex’ and ‘csl’ export processors support bibliography options through a prop-
erty list attached to the ‘PRINT_BIBLIOGRAPHY’ keyword. For example,

#+print_bibliography: :keyword algebra :type book

Values including spaces must be surrounded with double quotes. If you need to use a key
multiple times, you can separate its values with commas, but without any space in-between:

#+print_bibliography: :keyword "algebraic logic" :nottype article,book

The ‘biblatex’ export processor accepts all options supported by BibLATEX’s
\printbibliography command.

The ‘csl’ processor accepts the following options:

‘:keyword <keyword(,keyword2...)>’
Print only entries whose keyword field contains all given keywords.

‘:notkeyword <keyword(,keyword2...)>’
Print only entries whose keyword field does not contain any of the given key-
words.

‘:type <entrytype>’
Print only entries whose type is ‘<entrytype>’. Entry type is the
BibTEX/BibLATEX entry type if this information is available (the entry
was read from a BibTEX/BibLATEX bibliography) and the CSL entry type
otherwise.

‘:nottype <entrytype(,entrytype2...)>’
Print only entries whose type is not among the given entry types. Entry type
is determined as in the case of ‘:type’.

‘:csltype <entrytype>’
Print only entries whose CSL entry type (possibly based on a conversion from
BibTEX/BibLATEX to CSL) is ‘<entrytype>’.

Chapter 15: Citation handling 227

‘:notcsltype <entrytype(,entrytype2...)>’
Print only entries whose CSL entry type (possibly based on a conversion from
BibTEX/BibLATEX to CSL) is not among the listed entry types.

‘:filter <predicate>’
Print only entries for which the given Emacs Lisp predicate returns a non-nil
value.

Chapter 16: Working with Source Code 228

16 Working with Source Code

Source code here refers to any plain text collection of computer instructions, possibly with
comments, written using a human-readable programming language. Org can manage source
code in an Org document when the source code is identified with begin and end markers.
Working with source code begins with identifying source code blocks. A source code block
can be placed almost anywhere in an Org document; it is not restricted to the preamble or
the end of the document. However, Org cannot manage a source code block if it is placed
inside an Org comment or within a fixed width section.

Here is an example source code block in the Emacs Lisp language:

#+BEGIN_SRC emacs-lisp

(defun org-xor (a b)

"Exclusive or."

(if a (not b) b))

#+END_SRC

Source code blocks are one of many Org block types, which also include “center”, “com-
ment”, “dynamic”, “example”, “export”, “quote”, “special”, and “verse”. This section
pertains to blocks between ‘#+BEGIN_SRC’ and ‘#+END_SRC’.

Details of Org’s facilities for working with source code are described in the following
sections.

16.1 Features Overview

Org can manage the source code in the block delimited by ‘#+BEGIN_SRC’ . . . ‘#+END_SRC’
in several ways that can simplify housekeeping tasks essential to modern source code main-
tenance. Org can edit, format, extract, export, and publish source code blocks. Org can
also compile and execute a source code block, then capture the results. The Org mode
literature sometimes refers to source code blocks as live code blocks because they can alter
the content of the Org document or the material that it exports. Users can control the
“liveliness” of each source code block by tweaking the header arguments (see Section 16.3
[Using Header Arguments], page 230) for compiling, execution, extraction, and exporting.

For editing and formatting a source code block, Org uses an appropriate Emacs major
mode that includes features specifically designed for source code in that language.

Org can extract one or more source code blocks and write them to one or more source
files—a process known as tangling in literate programming terminology.

For exporting and publishing, Org’s backends can format a source code block appropri-
ately, often with native syntax highlighting.

For executing and compiling a source code block, the user can configure Org to select
the appropriate compiler. Org provides facilities to collect the result of the execution or
compiler output, insert it into the Org document, and/or export it. In addition to text
results, Org can insert links to other data types, including audio, video, and graphics. Org
can also link a compiler error message to the appropriate line in the source code block.

An important feature of Org’s management of source code blocks is the ability to pass
variables, functions, and results to one another using a common syntax for source code
blocks in any language. Although most literate programming facilities are restricted to

Chapter 16: Working with Source Code 229

one language or another, Org’s language-agnostic approach lets the literate programmer
match each programming task with the appropriate computer language and to mix them
all together in a single Org document. This interoperability among languages explains why
Org’s source code management facility was named Org Babel by its originators, Eric Schulte
and Dan Davison.

Org mode fulfills the promise of easy verification and maintenance of publishing re-
producible research by keeping text, data, code, configuration settings of the execution
environment, the results of the execution, and associated narratives, claims, references, and
internal and external links in a single Org document.

16.2 Structure of Code Blocks

Org offers two ways to structure source code in Org documents: in a source code block, and
directly inline. Both specifications are shown below.

A source code block conforms to this structure:

#+NAME: <name>

#+BEGIN_SRC <language> <switches> <header arguments>

<body>

#+END_SRC

Do not be put-off by having to remember the source block syntax. Org mode offers
a command for wrapping existing text in a block (see Section 17.2 [Structure Templates],
page 258). Org also works with other completion systems in Emacs, some of which predate
Org and have custom domain-specific languages for defining templates. Regular use of
templates reduces errors, increases accuracy, and maintains consistency.

An inline code block conforms to this structure:

src_<language>{<body>}

or

src_<language>[<header arguments>]{<body>}

‘#+NAME: <name>’
Optional. Names the source block, so it can be called, like a function, from
other source blocks or inline code to evaluate or to capture the results. Code
from other blocks, other files, and from table formulas (see Section 3.5 [The
Spreadsheet], page 24) can use the name to reference a source block. This
naming serves the same purpose as naming Org tables. Org mode requires
unique names. For duplicate names, Org mode’s behavior is undefined. Inline
code blocks cannot have a name.

‘#+BEGIN_SRC’ . . . ‘#+END_SRC’
Mandatory. They mark the start and end of a block that Org requires. The
‘#+BEGIN_SRC’ line takes additional arguments, as described next.

‘<language>’
Optional. It is the identifier of the source code language in the block. See
Section 16.9 [Languages], page 251, for identifiers of supported languages.

When ‘<language>’ identifier is omitted, the block also cannot have
‘<switches>’ and ‘<header arguments>’.

Chapter 16: Working with Source Code 230

Language identifier is also used to fontify code blocks in Org buffers, when
org-src-fontify-natively is set to non-nil. See Section 16.10 [Editing
Source Code], page 251.

‘<switches>’
Optional. Switches provide finer control of the code execution, export, and for-
mat (see the discussion of switches in Section 12.6 [Literal Examples], page 146).

‘<header arguments>’
Optional. Heading arguments control many aspects of evaluation, export and
tangling of code blocks (see Section 16.3 [Using Header Arguments], page 230).
Using Org’s properties feature, header arguments can be selectively applied to
the entire buffer or specific subtrees of the Org document.

‘<body>’ Source code in the dialect of the specified language identifier.

16.3 Using Header Arguments

Org comes with many header arguments common to all languages. New header arguments
are added for specific languages as they become available for use in source code blocks.
A header argument is specified with an initial colon followed by the argument’s name in
lowercase.

Since header arguments can be set in several ways, Org prioritizes them in case of overlaps
or conflicts by giving local settings a higher priority. Header values in function calls, for
example, override header values from global defaults.

System-wide header arguments

System-wide values of header arguments can be specified by customizing the org-babel-

default-header-args variable, which defaults to the following values:

:session => "none"

:results => "replace"

:exports => "code"

:cache => "no"

:noweb => "no"

:hlines => "no"

:tangle => "no"

Inline source blocks (see Section 16.2 [Structure of Code Blocks], page 229) use slightly
different default header arguments defined in org-babel-default-inline-header-args:

:session => "none"

:results => "replace"

:exports => "results"

:hlines => "yes"

The most notable difference between default header arguments for inline and normal
source blocks is ‘:exports’ argument. For inline source blocks, results of evaluation are
exported by default; not the code.

Unlike the default values, header arguments set using Org mode properties (see [Header
arguments in Org mode properties], page 231) do apply to both the normal source blocks
and inline source blocks.

Chapter 16: Working with Source Code 231

The example below sets ‘:noweb’ header arguments to ‘yes’, which makes Org expand
‘:noweb’ references by default.

(setq org-babel-default-header-args

(cons '(:noweb . "yes")

(assq-delete-all :noweb org-babel-default-header-args)))

Each language can have separate default header arguments by customizing the variable
org-babel-default-header-args:<LANG>, where <LANG> is the name of the language.
For details, see the language-specific online documentation at https://orgmode.org/worg/
org-contrib/babel/.

Header arguments in Org mode properties

For header arguments applicable to the buffer, use ‘PROPERTY’ keyword anywhere in the
Org file (see Section 7.1 [Property Syntax], page 68).

The following example makes all the R code blocks execute in the same session. Setting
‘:results’ to ‘silent’ ignores the results of executions for all blocks, not just R code
blocks; no results inserted for any block.

#+PROPERTY: header-args:R :session *R*

#+PROPERTY: header-args :results silent

Header arguments set through Org’s property drawers (see Section 7.1 [Property Syntax],
page 68) apply at the subtree level on down. Since these property drawers can appear
anywhere in the file hierarchy, Org uses outermost call or source block to resolve the values.
Org ignores org-use-property-inheritance setting.

In this example, ‘:cache’ defaults to ‘yes’ for all code blocks in the subtree.

* sample header

:PROPERTIES:

:header-args: :cache yes

:END:

Properties defined through org-set-property function, bound to C-c C-x p, apply to
all active languages. They override properties set in org-babel-default-header-args.

Language-specific header arguments are also read from properties ‘header-args:<LANG>’
where <LANG> is the language identifier. For example,

* Heading

:PROPERTIES:

:header-args:clojure: :session *clojure-1*

:header-args:R: :session *R*

:END:

** Subheading

:PROPERTIES:

:header-args:clojure: :session *clojure-2*

:END:

would force separate sessions for Clojure blocks in ‘Heading’ and ‘Subheading’, but use the
same session for all R blocks. Blocks in ‘Subheading’ inherit settings from ‘Heading’.

https://orgmode.org/worg/org-contrib/babel/
https://orgmode.org/worg/org-contrib/babel/

Chapter 16: Working with Source Code 232

Code block specific header arguments

Header arguments are most commonly set at the source code block level, on the
‘#+BEGIN_SRC’ line. Arguments set at this level take precedence over those set in the
org-babel-default-header-args variable, and also those set as header properties.

In the following example, setting ‘:results’ to ‘silent’ makes it ignore results of the
code execution. Setting ‘:exports’ to ‘code’ exports only the body of the code block to
HTML or LATEX.

#+NAME: factorial

#+BEGIN_SRC haskell :results silent :exports code :var n=0

fac 0 = 1

fac n = n * fac (n-1)

#+END_SRC

The same header arguments in an inline code block:

src_haskell[:exports both]{fac 5}

Code block header arguments can span multiple lines using ‘#+HEADER:’ on each line.
Note that Org currently accepts the plural spelling of ‘#+HEADER:’ only as a convenience
for backward-compatibility. It may be removed at some point.

Multi-line header arguments on an unnamed code block:

#+HEADER: :var data1=1

#+BEGIN_SRC emacs-lisp :var data2=2

(message "data1:%S, data2:%S" data1 data2)

#+END_SRC

#+RESULTS:

: data1:1, data2:2

Multi-line header arguments on a named code block:

#+NAME: named-block

#+HEADER: :var data=2

#+BEGIN_SRC emacs-lisp

(message "data:%S" data)

#+END_SRC

#+RESULTS: named-block

: data:2

Header arguments in function calls

Header arguments in function calls are the most specific and override all other settings
in case of an overlap. They get the highest priority. Two ‘#+CALL:’ examples are shown
below. For the complete syntax of ‘CALL’ keyword, see Section 16.5 [Evaluating Code
Blocks], page 239.

In this example, ‘:exports results’ header argument is applied to the evaluation of
the ‘#+CALL:’ line.

#+CALL: factorial(n=5) :exports results

Chapter 16: Working with Source Code 233

In this example, ‘:session special’ header argument is applied to the evaluation of
‘factorial’ code block.

#+CALL: factorial[:session special](n=5)

16.4 Environment of a Code Block

Passing arguments

Use ‘var’ for passing arguments to source code blocks. The specifics of variables in code
blocks vary by the source language and are covered in the language-specific documentation.
The syntax for ‘var’, however, is the same for all languages. This includes declaring a
variable, and assigning a default value.

The following syntax is used to pass arguments to code blocks using the ‘var’ header
argument.

:var NAME=ASSIGN

NAME is the name of the variable bound in the code block body. ASSIGN is a literal value,
such as a string, a number, a reference to a table, a list, a literal example, another code
block—with or without arguments—or the results of evaluating a code block. ASSIGN may
specify a filename for references to elements in a different file, using a ‘:’ to separate the
filename from the reference.

:var NAME=FILE:REFERENCE

When ‘FILE’ does not exist, the reference is searched in the current file, using the
verbatim reference. This way, ‘:var table=tbl:example’ will be searched inside the current
buffer.

Here are examples of passing values by reference:

table A table named with a ‘NAME’ keyword.

#+NAME: example-table

| 1 |

| 2 |

| 3 |

| 4 |

#+NAME: table-length

#+BEGIN_SRC emacs-lisp :var table=example-table

(length table)

#+END_SRC

#+RESULTS: table-length

: 4

When passing a table, you can treat specially the row, or the column, containing
labels for the columns, or the rows, in the table.

The ‘colnames’ header argument accepts ‘yes’, ‘no’, or ‘nil’ values. The de-
fault value is ‘nil’: if an input table has column names—because the second
row is a horizontal rule—then Org removes the column names, processes the
table, puts back the column names, and then writes the table to the results

Chapter 16: Working with Source Code 234

block. Using ‘yes’, Org does the same to the first non-hline row, even if the
initial table does not contain any horizontal rule. When set to ‘no’, Org does
not pre-process column names at all.

#+NAME: less-cols

| a |

|---|

| b |

| c |

#+BEGIN_SRC python :var tab=less-cols :colnames nil

return [[val + '*' for val in row] for row in tab]

#+END_SRC

#+RESULTS:

| a |

|----|

| b* |

| c* |

Similarly, the ‘rownames’ header argument can take two values: ‘yes’ or ‘no’.
When set to ‘yes’, Org removes the first column, processes the table, puts back
the first column, and then writes the table to the results block. The default is
‘no’, which means Org does not pre-process the first column. Note that Emacs
Lisp code blocks ignore ‘rownames’ header argument because of the ease of
table-handling in Emacs.

#+NAME: with-rownames

| one | 1 | 2 | 3 | 4 | 5 |

| two | 6 | 7 | 8 | 9 | 10 |

#+BEGIN_SRC python :var tab=with-rownames :rownames yes

return [[val + 10 for val in row] for row in tab]

#+END_SRC

#+RESULTS:

| one | 11 | 12 | 13 | 14 | 15 |

| two | 16 | 17 | 18 | 19 | 20 |

To refer to a table in another file, join the filename and table name with a colon, for
example: ‘:var table=other-file.org:example-table’.

list A simple named list.

#+NAME: example-list

- simple

- not

- nested

- list

#+BEGIN_SRC emacs-lisp :var x=example-list

Chapter 16: Working with Source Code 235

(print x)

#+END_SRC

#+RESULTS:

| simple | list |

Note that only the top level list items are passed along. Nested list items are
ignored.

code block without arguments
A code block name, as assigned by ‘NAME’ keyword from the example above,
optionally followed by parentheses.

#+BEGIN_SRC emacs-lisp :var length=table-length()

(* 2 length)

#+END_SRC

#+RESULTS:

: 8

code block with arguments
A code block name, as assigned by ‘NAME’ keyword, followed by parentheses and
optional arguments passed within the parentheses. The block is evaluated with
point at its location.

#+NAME: double

#+BEGIN_SRC emacs-lisp :var input=8

(* 2 input)

#+END_SRC

#+RESULTS: double

: 16

#+NAME: squared

#+BEGIN_SRC emacs-lisp :var input=double(input=1)

(* input input)

#+END_SRC

#+RESULTS: squared

: 4

literal example, or code block contents
A code block or literal example block named with a ‘NAME’ keyword, followed
by brackets (optional for example blocks).

#+NAME: literal-example

#+BEGIN_EXAMPLE

A literal example

on two lines

#+END_EXAMPLE

#+NAME: read-literal-example

Chapter 16: Working with Source Code 236

#+BEGIN_SRC emacs-lisp :var x=literal-example[]

(concatenate #'string x " for you.")

#+END_SRC

#+RESULTS: read-literal-example

: A literal example

: on two lines for you.

Indexing variable values enables referencing portions of a variable. Indexes are 0 based
with negative values counting backwards from the end. If an index is separated by commas
then each subsequent section indexes as the next dimension. Note that this indexing oc-
curs before other table-related header arguments are applied, such as ‘hlines’, ‘colnames’
and ‘rownames’. The following example assigns the last cell of the first row the table
‘example-table’ to the variable ‘data’:

#+NAME: example-table

| 1 | a |

| 2 | b |

| 3 | c |

| 4 | d |

#+BEGIN_SRC emacs-lisp :var data=example-table[0,-1]

data

#+END_SRC

#+RESULTS:

: a

Two integers separated by a colon reference a range of variable values. In that case the
entire inclusive range is referenced. For example the following assigns the middle three rows
of ‘example-table’ to ‘data’.

#+NAME: example-table

| 1 | a |

| 2 | b |

| 3 | c |

| 4 | d |

| 5 | 3 |

#+BEGIN_SRC emacs-lisp :var data=example-table[1:3]

data

#+END_SRC

#+RESULTS:

| 2 | b |

| 3 | c |

| 4 | d |

To pick the entire range, use an empty index, or the single character ‘*’. ‘0:-1’ does the
same thing. Example below shows how to reference the first column only.

Chapter 16: Working with Source Code 237

#+NAME: example-table

| 1 | a |

| 2 | b |

| 3 | c |

| 4 | d |

#+BEGIN_SRC emacs-lisp :var data=example-table[,0]

data

#+END_SRC

#+RESULTS:

| 1 | 2 | 3 | 4 |

Index referencing can be used for tables and code blocks. Index referencing can handle
any number of dimensions. Commas delimit multiple dimensions, as shown below.

#+NAME: 3D

#+BEGIN_SRC emacs-lisp

'(((1 2 3) (4 5 6) (7 8 9))

((10 11 12) (13 14 15) (16 17 18))

((19 20 21) (22 23 24) (25 26 27)))

#+END_SRC

#+BEGIN_SRC emacs-lisp :var data=3D[1,,1]

data

#+END_SRC

#+RESULTS:

| 11 | 14 | 17 |

Note that row names and column names are not removed prior to variable indexing.
You need to take them into account, even when ‘colnames’ or ‘rownames’ header arguments
remove them.

Emacs lisp code can also set the values for variables. To differentiate a value from Lisp
code, Org interprets any value starting with ‘(’, ‘[’, ‘'’ or ‘`’ as Emacs Lisp code. The
result of evaluating that code is then assigned to the value of that variable. The following
example shows how to reliably query and pass the file name of the Org mode buffer to a
code block using headers. We need reliability here because the file’s name could change
once the code in the block starts executing.

#+BEGIN_SRC sh :var filename=(buffer-file-name) :exports both

wc -w $filename

#+END_SRC

Note that values read from tables and lists are not mistakenly evaluated as Emacs Lisp
code, as illustrated in the following example.

#+NAME: table

| (a b c) |

#+HEADER: :var data=table[0,0]

Chapter 16: Working with Source Code 238

#+BEGIN_SRC perl

$data

#+END_SRC

#+RESULTS:

: (a b c)

Using sessions

Two code blocks can share the same environment. The ‘session’ header argument is for
running multiple source code blocks under one session. Org runs code blocks with the same
session name in the same interpreter process.

‘none’ Default. Each code block gets a new interpreter process to execute. The process
terminates once the block is evaluated.

STRING Any string besides ‘none’ turns that string into the name of that session. For
example, ‘:session STRING’ names it ‘STRING’. If ‘session’ has no value, then
the session name is derived from the source language identifier. Subsequent
blocks with the same source code language use the same session. Depending on
the language, state variables, code from other blocks, and the overall interpreted
environment may be shared. Some interpreted languages support concurrent
sessions when subsequent source code language blocks change session names.

Only languages that provide interactive evaluation can have session support. Not all
languages provide this support, such as C and ditaa. Even languages, such as Python and
Haskell, that do support interactive evaluation impose limitations on allowable language
constructs that can run interactively. Org inherits those limitations for those code blocks
running in a session.

Choosing a working directory

The ‘dir’ header argument specifies the default directory during code block execution.
If it is absent, then the directory associated with the current buffer is used. In other
words, supplying ‘:dir DIRECTORY’ temporarily has the same effect as changing the current
directory with M-x cd RET DIRECTORY, and then not setting ‘dir’. Under the surface, ‘dir’
simply sets the value of the Emacs variable default-directory. Setting ‘mkdirp’ header
argument to a non-nil value creates the directory, if necessary.

Setting ‘dir’ to the symbol attach or the string "'attach" will set ‘dir’ to the directory
returned by (org-attach-dir), set ‘:mkdirp yes’, and insert any file paths, as when using
‘:results file’, which are under the node’s attachment directory using ‘attachment:’
links instead of the usual ‘file:’ links. Any returned path outside the attachment directory
will use ‘file:’ links as per usual.

For example, to save the plot file in the ‘Work/’ folder of the home directory—notice
tilde is expanded:

#+BEGIN_SRC R :file myplot.png :dir ~/Work

matplot(matrix(rnorm(100), 10), type="l")

#+END_SRC

To evaluate the code block on a remote machine, supply a remote directory name using
Tramp syntax. For example:

Chapter 16: Working with Source Code 239

#+BEGIN_SRC R :file plot.png :dir /scp:dand@yakuba.princeton.edu:

plot(1:10, main=system("hostname", intern=TRUE))

#+END_SRC

Org first captures the text results as usual for insertion in the Org file. Then Org also
inserts a link to the remote file, thanks to Emacs Tramp. Org constructs the remote path
to the file name from ‘dir’ and default-directory, as illustrated here:

[[file:/scp:dand@yakuba.princeton.edu:/home/dand/plot.png][plot.png]]

When ‘dir’ is used with ‘session’, Org sets the starting directory for a new session.
But Org does not alter the directory of an already existing session.

Do not use ‘dir’ with ‘:exports results’ or with ‘:exports both’ to avoid Org insert-
ing incorrect links to remote files. That is because Org does not expand default directory

to avoid some underlying portability issues.

Inserting headers and footers

The ‘prologue’ header argument is for appending to the top of the code block for execution,
like a reset instruction. For example, you may use ‘:prologue "reset"’ in a Gnuplot code
block or, for every such block:

(add-to-list 'org-babel-default-header-args:gnuplot

'((:prologue . "reset")))

Likewise, the value of the ‘epilogue’ header argument is for appending to the end of
the code block for execution.

16.5 Evaluating Code Blocks

A note about security: With code evaluation comes the risk of harm. Org safeguards by
prompting for user’s permission before executing any code in the source block. To customize
this safeguard, or disable it, see Section 17.13 [Code Evaluation Security], page 266.

How to evaluate source code

Org captures the results of the code block evaluation and inserts them in the Org file, right
after the code block. The insertion point is after a newline and the ‘RESULTS’ keyword.
Org creates the ‘RESULTS’ keyword if one is not already there. More details in Section 16.6
[Results of Evaluation], page 242.

By default, Org enables only Emacs Lisp code blocks for execution. See Section 16.9
[Languages], page 251 to enable other languages.

Org provides many ways to execute code blocks. C-c C-c or C-c C-v e with the point on
a code block1 calls the org-babel-execute-src-block function, which executes the code
in the block, collects the results, and inserts them in the buffer.

By calling a named code block2 from an Org mode buffer or a table. Org can call the
named code blocks from the current Org mode buffer or from the “Library of Babel” (see
Section 16.12 [Library of Babel], page 256).

1 The option org-babel-no-eval-on-ctrl-c-ctrl-c can be used to remove code evaluation from the
C-c C-c key binding.

2 Actually, the constructs ‘call_<name>()’ and ‘src_<lang>{}’ are not evaluated when they appear in a
keyword (see Section 17.8 [In-buffer Settings], page 262).

Chapter 16: Working with Source Code 240

The syntax for ‘CALL’ keyword is:

#+CALL: <name>(<arguments>)

#+CALL: <name>[<inside header arguments>](<arguments>) <end header arguments>

The syntax for inline named code blocks is:

... call_<name>(<arguments>) ...

... call_<name>[<inside header arguments>](<arguments>)[<end header arguments>] ...

When inline syntax is used, the result is wrapped based on the variable org-babel-

inline-result-wrap, which by default is set to "=%s=" to produce verbatim text suitable
for markup.

‘<name>’ This is the name of the code block (see Section 16.2 [Structure of Code Blocks],
page 229) to be evaluated in the current document. If the block is located in
another file, start ‘<name>’ with the file name followed by a colon. For example,
in order to execute a block named ‘clear-data’ in ‘file.org’, you can write
the following:

#+CALL: file.org:clear-data()

‘<arguments>’
Org passes arguments to the code block using standard function call syntax.
For example, a ‘#+CALL:’ line that passes ‘4’ to a code block named ‘double’,
which declares the header argument ‘:var n=2’, would be written as:

#+CALL: double(n=4)

Note how this function call syntax is different from the header argument syntax.

‘<inside header arguments>’
Org passes inside header arguments to the named code block using the header
argument syntax. Inside header arguments apply to code block evaluation. For
example, ‘[:results output]’ collects results printed to stdout during code
execution of that block. Note how this header argument syntax is different
from the function call syntax.

‘<end header arguments>’
End header arguments affect the results returned by the code block. For ex-
ample, ‘:results html’ wraps the results in a ‘#+BEGIN_EXPORT html’ block
before inserting the results in the Org buffer.

Limit code block evaluation

The ‘eval’ header argument can limit evaluation of specific code blocks and ‘CALL’ keyword.
It is useful for protection against evaluating untrusted code blocks by prompting for a
confirmation.

‘yes’ Org evaluates the source code, possibly asking permission according to
org-confirm-babel-evaluate.

‘never’ or ‘no’
Org never evaluates the source code.

‘query’ Org prompts the user for permission to evaluate the source code.

Chapter 16: Working with Source Code 241

‘never-export’ or ‘no-export’
Org does not evaluate the source code when exporting, yet the user can evaluate
it interactively.

‘query-export’
Org prompts the user for permission to evaluate the source code during export.

If ‘eval’ header argument is not set, then Org determines whether to evaluate the source
code from the org-confirm-babel-evaluate variable (see Section 17.13 [Code Evaluation
Security], page 266).

Cache results of evaluation

The ‘cache’ header argument is for caching results of evaluating code blocks. Caching
results can avoid re-evaluating a code block that have not changed since the previous run.
To benefit from the cache and avoid redundant evaluations, the source block must have a
result already present in the buffer, and neither the header arguments—including the value
of ‘var’ references—nor the text of the block itself has changed since the result was last
computed. This feature greatly helps avoid long-running calculations. For some edge cases,
however, the cached results may not be reliable.

The caching feature is best for when code blocks are pure functions, that is functions
that return the same value for the same input arguments (see Section 16.4 [Environment
of a Code Block], page 233), and that do not have side effects, and do not rely on external
variables other than the input arguments. Functions that depend on a timer, file system
objects, and random number generators are clearly unsuitable for caching.

A note of warning: when ‘cache’ is used in a session, caching may cause unexpected
results.

When the caching mechanism tests for any source code changes, it does not expand
noweb style references (see Section 16.11 [Noweb Reference Syntax], page 252).

The ‘cache’ header argument can have one of two values: ‘yes’ or ‘no’.

‘no’ Default. No caching of results; code block evaluated every time.

‘yes’ Whether to run the code or return the cached results is determined by compar-
ing the SHA1 hash value of the combined code block and arguments passed to
it. This hash value is packed on the ‘#+RESULTS:’ line from previous evaluation.
When hash values match, Org does not evaluate the code block. When hash
values mismatch, Org evaluates the code block, inserts the results, recalculates
the hash value, and updates ‘#+RESULTS:’ line.

In this example, both functions are cached. But ‘caller’ runs only if the result from
‘random’ has changed since the last run.

#+NAME: random

#+BEGIN_SRC R :cache yes

runif(+1)

#+END_SRC

#+RESULTS[a2a72cd647ad44515fab62e144796432793d68e1]: random

0.4659510825295

Chapter 16: Working with Source Code 242

#+NAME: caller

#+BEGIN_SRC emacs-lisp :var x=random :cache yes

x

#+END_SRC

#+RESULTS[bec9c8724e397d5df3b696502df3ed7892fc4f5f]: caller

0.254227238707244

16.6 Results of Evaluation

How Org handles results of a code block execution depends on many header arguments
working together. The primary determinant, however, is the ‘results’ header argument.
It accepts four classes of options. Each code block can take only one option per class:

Collection For how the results should be collected from the code block;

Type For which type of result the code block will return; affects how Org processes
and inserts results in the Org buffer;

Format For the result; affects how Org processes results;

Handling For inserting results once they are properly formatted.

Collection

Collection options specify the results. Choose one of the options; they are mutually exclu-
sive.

‘value’ Default for most Babel libraries3. Functional mode. Org gets the value by
wrapping the code in a function definition in the language of the source block.
That is why when using ‘:results value’, code should execute like a function
and return a value. For languages like Python, an explicit return statement is
mandatory when using ‘:results value’. Result is the value returned by the
last statement in the code block.

When evaluating the code block in a session (see Section 16.4 [Environment
of a Code Block], page 233), Org passes the code to an interpreter running as
an interactive Emacs inferior process. Org gets the value from the source code
interpreter’s last statement output. Org has to use language-specific methods
to obtain the value. For example, from the variable _ in Ruby, and the value
of .Last.value in R.

‘output’ Scripting mode. Org passes the code to an external process running the inter-
preter. Org returns the contents of the standard output stream as text results.

When using a session, Org passes the code to the interpreter running as an
interactive Emacs inferior process. Org concatenates any text output from the
interpreter and returns the collection as a result.

3 Actually, the constructs ‘call_<name>()’ and ‘src_<lang>{}’ are not evaluated when they appear in a
keyword (see Section 17.8 [In-buffer Settings], page 262).

Chapter 16: Working with Source Code 243

Type

Type tells what result types to expect from the execution of the code block. Choose one of
the options; they are mutually exclusive.

The default behavior is to automatically determine the result type. The result type
detection depends on the code block language, as described in the documentation for indi-
vidual languages. See Section 16.9 [Languages], page 251.

‘table’, ‘vector’
Interpret the results as an Org table. If the result is a single value, create a
table with one row and one column. Usage example: ‘:results value table’.

In-between each table row or below the table headings, sometimes results have
horizontal lines, which are also known as “hlines”. The ‘hlines’ argument with
the default ‘no’ value strips such lines from the input table. For most code, this
is desirable, or else those ‘hline’ symbols raise unbound variable errors. A
‘yes’ accepts such lines, as demonstrated in the following example.

#+NAME: many-cols

| a | b | c |

|---+---+---|

| d | e | f |

|---+---+---|

| g | h | i |

#+NAME: no-hline

#+BEGIN_SRC python :var tab=many-cols :hlines no

return tab

#+END_SRC

#+RESULTS: no-hline

| a | b | c |

| d | e | f |

| g | h | i |

#+NAME: hlines

#+BEGIN_SRC python :var tab=many-cols :hlines yes

return tab

#+END_SRC

#+RESULTS: hlines

| a | b | c |

|---+---+---|

| d | e | f |

|---+---+---|

| g | h | i |

‘list’ Interpret the results as an Org list. If the result is a single value, create a list
of one element.

Chapter 16: Working with Source Code 244

‘scalar’, ‘verbatim’
Interpret literally and insert as quoted text. Do not create a table. Usage
example: ‘:results value verbatim’.

‘file’ Interpret as a filename. Save the results of execution of the code block to
that file, then insert a link to it. You can control both the filename and the
description associated to the link.

Org first tries to generate the filename from the value of the ‘file’ header
argument and the directory specified using the ‘output-dir’ header arguments.
If ‘output-dir’ is not specified, Org assumes it is the current directory.

#+BEGIN_SRC asymptote :results value file :file circle.pdf :output-dir img/

size(2cm);

draw(unitcircle);

#+END_SRC

If ‘file’ header argument is missing, Org generates the base name of the output
file from the name of the code block, and its extension from the ‘file-ext’
header argument. In that case, both the name and the extension are mandatory.

Result can also be interpreted as path to file. See ‘:results link’.

#+name: circle

#+BEGIN_SRC asymptote :results value file :file-ext pdf

size(2cm);

draw(unitcircle);

#+END_SRC

The ‘file-desc’ header argument defines the description (see Section 4.1 [Link
Format], page 39) for the link. If ‘file-desc’ is present but has no value, the
‘file’ value is used as the link description. When this argument is not present,
the description is omitted. If you want to provide the ‘file-desc’ argument
but omit the description, you can provide it with an empty vector (i.e., :file-desc
[]).

By default, Org assumes that a table written to a file has TAB-delimited output.
You can choose a different separator with the ‘sep’ header argument.

The ‘file-mode’ header argument defines the file permissions. To make it
executable, use ‘:file-mode (identity #o755)’.

#+BEGIN_SRC shell :results file :file script.sh :file-mode (identity #o755)

echo "#!/bin/bash"

echo "echo Hello World"

#+END_SRC

Format

Format pertains to the type of the result returned by the code block. Choose one of the
options; they are mutually exclusive. The default follows from the type specified above.

‘raw’ Interpreted as raw Org mode. Inserted directly into the buffer. Aligned if it is
a table. Usage example: ‘:results value raw’.

‘code’ Result enclosed in a code block. Useful for parsing. Usage example: ‘:results
value code’.

Chapter 16: Working with Source Code 245

‘drawer’ Results are added directly to the Org file as with ‘raw’, but are wrapped in a
‘RESULTS’ drawer or results macro (for inline code blocks), for later scripting
and automated processing. Usage example: ‘:results value drawer’.

‘html’ Results enclosed in a ‘BEGIN_EXPORT html’ block. Usage example: ‘:results
value html’.

‘latex’ Results enclosed in a ‘BEGIN_EXPORT latex’ block. Usage example: ‘:results
value latex’.

‘link’, ‘graphics’
When used along with ‘file’ type, the result is a link to the file specified in
‘:file’ header argument. However, unlike plain ‘file’ type, code block output
is not written to the disk. The block is expected to generate the file by its side
effects only, as in the following example:

#+begin_src shell :results file link :file "org-mode-unicorn.svg"

wget -c "https://orgmode.org/resources/img/org-mode-unicorn.svg"

#+end_src

#+RESULTS:

[[file:org-mode-unicorn.svg]]

If ‘:file’ header argument is omitted, interpret source block result as the file
path.

‘org’ Results enclosed in a ‘BEGIN_SRC org’ block. For comma-escape, either TAB in
the block, or export the file. Usage example: ‘:results value org’.

‘pp’ Result converted to pretty-print source code. Enclosed in a code block. Lan-
guages supported: Emacs Lisp, Python, and Ruby. Usage example: ‘:results
value pp’.

The ‘wrap’ header argument unconditionally marks the results block by appending
strings to ‘#+BEGIN_’ and ‘#+END_’. If no string is specified, Org wraps the results in
a ‘#+BEGIN_results’ . . . ‘#+END_results’ block. It takes precedent over the ‘results’
value listed above. E.g.,

#+BEGIN_SRC emacs-lisp :results html :wrap EXPORT markdown

"<blink>Welcome back to the 90's</blink>"

#+END_SRC

#+RESULTS:

#+BEGIN_EXPORT markdown

<blink>Welcome back to the 90's</blink>

#+END_EXPORT

Handling

Handling options after collecting the results. Choose one of the options; they are mutually
exclusive.

‘replace’ Default. Insert results in the Org buffer. Remove previous results. Usage
example: ‘:results output replace’.

Chapter 16: Working with Source Code 246

‘silent’ Do not insert results in the Org mode buffer, but echo them in the minibuffer.
Usage example: ‘:results output silent’.

‘none’ Compute results, but do not do anything with them. No inserting in the Org
mode buffer nor echo them in the minibuffer. The results can still be used when
referenced from another code block. Usage example: ‘:results none’.

‘discard’ Ignore the results completely. This option is similar to ‘none’, but no processing
is performed on the return value. Calling the code block programmatically
(see [How to evaluate source code], page 239) or by reference (see [Passing
arguments], page 233 and Section 16.11 [Noweb Reference Syntax], page 252)
will always yield nil.

‘append’ Append results to the Org buffer. Latest results are at the bottom. Does not
remove previous results. Usage example: ‘:results output append’.

‘prepend’ Prepend results to the Org buffer. Latest results are at the top. Does not
remove previous results. Usage example: ‘:results output prepend’.

Post-processing

The ‘post’ header argument is for post-processing results from block evaluation. When
‘post’ has any value, Org binds the results to *this* variable for easy passing to ‘var’
header argument specifications (see Section 16.4 [Environment of a Code Block], page 233).
That makes results available to other code blocks, or even for direct Emacs Lisp code
execution.

The following two examples illustrate ‘post’ header argument in action. The first one
shows how to attach an ‘ATTR_LATEX’ keyword using ‘post’.

#+NAME: attr_wrap

#+BEGIN_SRC sh :var data="" :var width="\\textwidth" :results output

echo "#+ATTR_LATEX: :width $width"

echo "$data"

#+END_SRC

#+HEADER: :file /tmp/it.png

#+BEGIN_SRC dot :post attr_wrap(width="5cm", data=*this*) :results drawer

digraph{

a -> b;

b -> c;

c -> a;

}

#+end_src

#+RESULTS:

:RESULTS:

#+ATTR_LATEX :width 5cm

[[file:/tmp/it.png]]

:END:

The second example shows use of ‘colnames’ header argument in ‘post’ to pass data
between code blocks.

Chapter 16: Working with Source Code 247

#+NAME: round-tbl

#+BEGIN_SRC emacs-lisp :var tbl="" fmt="%.3f"

(mapcar (lambda (row)

(mapcar (lambda (cell)

(if (numberp cell)

(format fmt cell)

cell))

row))

tbl)

#+end_src

#+BEGIN_SRC R :colnames yes :post round-tbl[:colnames yes](*this*)

set.seed(42)

data.frame(foo=rnorm(1))

#+END_SRC

#+RESULTS:

| foo |

|-------|

| 1.371 |

16.7 Exporting Code Blocks

It is possible to export the code of code blocks, the results of code block evaluation, both
the code and the results of code block evaluation, or none. Org defaults to exporting code
for most languages and results for inline code blocks. For some languages, such as ditaa,
Org defaults to results both in ordinary source blocks and in inline source blocks. To export
just the body of code blocks, see Section 12.6 [Literal Examples], page 146. To selectively
export subtrees of an Org document, see Chapter 13 [Exporting], page 152.

The ‘exports’ header argument is to specify if that part of the Org file is exported to,
say, HTML or LATEX formats.

‘code’ The default. The body of code is included into the exported file. Example:
‘:exports code’.

‘results’ The results of evaluation of the code is included in the exported file. Example:
‘:exports results’.

‘both’ Both the code and results of evaluation are included in the exported file. Ex-
ample: ‘:exports both’.

‘none’ Neither the code nor the results of evaluation is included in the exported file.
Whether the code is evaluated at all depends on other options. Example:
‘:exports none’.

If a source block is named using ‘NAME’ keyword, the same name will be assigned to the
results of evaluation. This way, fuzzy links pointing to the named source blocks exported
using ‘:exports results’ will remain valid and point to the results of evaluation.

Chapter 16: Working with Source Code 248

Results of evaluation of a named block can also be explicitly named using a separate
‘NAME’ keyword. The name value set via ‘NAME’ keyword will be preferred over the parent
source block.

#+NAME: code name

#+BEGIN_SRC emacs-lisp :exports both value

(+ 1 2)

#+END_SRC

#+NAME: results name

#+RESULTS: code name

3

This [[code name][link]] will point to the code block.

Another [[results name][link]] will point to the results.

Explicit setting of the result name may be necessary when a named code block is exported
using ‘:exports both’. Links to such block may arbitrarily point either to the code block
or to its results when results do not have a distinct name.

Note that all the links pointing to a source block exported using ‘:exports none’ will
be broken. This will make export process fail, unless broken links are allowed during export
(see Section 13.2 [Export Settings], page 154).

To stop Org from evaluating code blocks to speed exports, use the header argument
‘:eval never-export’ (see Section 16.5 [Evaluating Code Blocks], page 239). To stop Org
from evaluating code blocks for greater security, set the org-export-use-babel variable
to nil, but understand that header arguments will have no effect.

Turning off evaluation comes in handy when batch processing. For example, markup
languages for wikis, which have a high risk of untrusted code. Stopping code block evaluation
also stops evaluation of all header arguments of the code block. This may not be desirable
in some circumstances. So during export, to allow evaluation of just the header arguments
but not any code evaluation in the source block, set ‘:eval never-export’ (see Section 16.5
[Evaluating Code Blocks], page 239).

Org never evaluates code blocks in commented subtrees when exporting (see Section 13.6
[Comment Lines], page 160). On the other hand, Org does evaluate code blocks in subtrees
excluded from export (see Section 13.2 [Export Settings], page 154).

16.8 Extracting Source Code

Extracting source code from code blocks is a basic task in literate programming. Org has
features to make this easy. In literate programming parlance, documents on creation are
woven with code and documentation, and on export, the code is tangled for execution by
a computer. Org facilitates weaving and tangling for producing, maintaining, sharing, and
exporting literate programming documents. Org provides extensive customization options
for extracting source code.

When Org tangles code blocks, it expands, merges, and transforms them. Then Org
recomposes them into one or more separate files, as configured through the options. During
this tangling process, Org expands variables in the source code, and resolves any noweb
style references (see Section 16.11 [Noweb Reference Syntax], page 252).

Chapter 16: Working with Source Code 249

Header arguments

The ‘tangle’ header argument specifies if the code block is exported to source file(s).

‘yes’ Export the code block to source file. The file name for the source file is derived
from the name of the Org file, and the file extension is derived from the source
code language identifier. Example: ‘:tangle yes’.

‘no’ The default. Do not extract the code in a source code file. Example: ‘:tangle
no’.

FILENAME
Export the code block to source file whose file name is derived from any string
passed to the ‘tangle’ header argument. Org derives the file name as being rel-
ative to the directory of the Org file’s location. Example: ‘:tangle FILENAME’.

The ‘mkdirp’ header argument creates parent directories for tangled files if the directory
does not exist. A ‘yes’ value enables directory creation whereas ‘no’ inhibits it.

The ‘comments’ header argument controls inserting comments into tangled files. These
are above and beyond whatever comments may already exist in the code block.

‘no’ The default. Do not insert any extra comments during tangling.

‘link’ Wrap the code block in comments. Include links pointing back to the place in
the Org file from where the code was tangled.

‘yes’ Kept for backward compatibility; same as ‘link’.

‘org’ Nearest headline text from Org file is inserted as comment. The exact text that
is inserted is picked from the leading context of the source block.

‘both’ Includes both ‘link’ and ‘org’ options.

‘noweb’ Includes ‘link’ option, expands noweb references (see Section 16.11 [Noweb
Reference Syntax], page 252), and wraps them in link comments inside the
body of the code block.

The ‘padline’ header argument controls insertion of newlines to pad source code in the
tangled file.

‘yes’ Default. Insert a newline before and after each code block in the tangled file.

‘no’ Do not insert newlines to pad the tangled code blocks.

The ‘shebang’ header argument can turn results into executable script files. By setting
it to a string value—for example, ‘:shebang "#!/bin/bash"’—Org inserts that string as
the first line of the tangled file that the code block is extracted to. Org then turns on the
tangled file’s executable permission.

The ‘tangle-mode’ header argument specifies what permissions to set for tangled files by
set-file-modes. Permissions are given by an octal value, which can be provided calling the
identity function on an elisp octal value. For instance, to create a read-only file one may
use ‘:tangle-mode (identity #o444)’. To reduce the verbosity required, a octal shorthand
is defined, ‘oXXX’ (‘o’ for octal). Using this, our read-only example is ‘:tangle-mode o444’.
Omitting the ‘o’ prefix will cause the argument to be interpreted as an integer, which
can lead to unexpected results (‘444’ is the same as ‘o674’). Two other shorthands are

Chapter 16: Working with Source Code 250

recognized, ls-style strings like ‘rw-r--r--’, and chmod-style permissions like ‘g+w’. Note
that chmod-style permissions are based on org-babel-tangle-default-file-mode, which
is ‘#o544’ by default.

When ‘:tangle-mode’ and ‘:shebang’ are both specified, the give ‘:tangle-mode’ will
override the permissions from ‘:shebang’. When multiple source code blocks tangle to a
single file with conflicting ‘:tangle-mode’ header arguments, Org’s behavior is undefined.

By default Org expands code blocks during tangling. The ‘no-expand’ header argument
turns off such expansions. Note that one side effect of expansion by org-babel-expand-

src-block also assigns values (see Section 16.4 [Environment of a Code Block], page 233)
to variables. Expansions also replace noweb references with their targets (see Section 16.11
[Noweb Reference Syntax], page 252). Some of these expansions may cause premature
assignment, hence this option. This option makes a difference only for tangling. It has no
effect when exporting since code blocks for execution have to be expanded anyway.

Functions

org-babel-tangle

Tangle the current file. Bound to C-c C-v t.

With prefix argument only tangle the current code block.

org-babel-tangle-file

Choose a file to tangle. Bound to C-c C-v f.

Tangle hooks

org-babel-pre-tangle-hook

This hook is run before the tangle process begins. The active buffer is buffer
to be tangled.

org-babel-tangle-body-hook

This hook is run from a temporary buffer containing expanded code of every
tangled code block. The hook can modify the expanded code as needed. The
contents of the current buffer will be used as actual code block expansion.

org-babel-post-tangle-hook

This hook is run from within code files tangled by org-babel-tangle, making it
suitable for post-processing, compilation, and evaluation of code in the tangled
files.

org-babel-tangle-finished-hook

This hook is run after post-tangle hooks, in the original buffer.

Jumping between code and Org

Debuggers normally link errors and messages back to the source code. But for tangled files,
we want to link back to the Org file, not to the tangled source file. To make this extra
jump, Org uses org-babel-tangle-jump-to-org function with two additional source code
block header arguments:

1. Set ‘padline’ to true—this is the default setting.

2. Set ‘comments’ to ‘link’, which makes Org insert links to the Org file.

Chapter 16: Working with Source Code 251

16.9 Languages

Code blocks in dozens of languages are supported. See Worg website for language specific
documentation.

By default, only Emacs Lisp is enabled for evaluation. To enable or disable other lan-
guages, customize the org-babel-load-languages variable either through the Emacs cus-
tomization interface, or by adding code to the init file as shown next.

In this example, evaluation is disabled for Emacs Lisp, and enabled for R.

(org-babel-do-load-languages

'org-babel-load-languages

'((emacs-lisp . nil)

(R . t)))

Note that this is not the only way to enable a language. Org also enables languages when
loaded with require statement. For example, the following enables execution of Clojure
code blocks:

(require 'ob-clojure)

16.10 Editing Source Code

Use C-c ' to edit the current code block. It opens a new major mode edit buffer containing
the body of the source code block, ready for any edits. Use C-c ' again to close the buffer
and return to the Org buffer.

C-x C-s saves the buffer and updates the contents of the Org buffer. Set org-edit-

src-auto-save-idle-delay to save the base buffer after a certain idle delay time. Set
org-edit-src-turn-on-auto-save to auto-save this buffer into a separate file using Auto-
save mode.

While editing the source code in the major mode, the Org Src minor mode remains active.
It provides these customization variables as described below. For even more variables, look
in the customization group org-edit-structure.

org-src-lang-modes

If an Emacs major-mode named <LANG>-mode exists, where <LANG> is the
language identifier from code block’s header line, then the edit buffer uses that
major mode. Use this variable to arbitrarily map language identifiers to major
modes.

When language identifier is omitted in the src block, Org mode’s behavior is
undefined.

org-src-window-setup

For specifying Emacs window arrangement when the new edit buffer is created.

org-src-preserve-indentation

Default is nil. Source code is indented. This indentation applies during export
or tangling, and depending on the context, may alter leading spaces and tabs.
When non-nil, source code is aligned with the leftmost column. No lines are
modified during export or tangling, which is very useful for white-space sensitive
languages, such as Python.

https://orgmode.org/worg/org-contrib/babel/languages/index.html
https://orgmode.org/worg/org-contrib/babel/languages/index.html

Chapter 16: Working with Source Code 252

org-src-ask-before-returning-to-edit-buffer

When nil, Org returns to the edit buffer without further prompts. The default
prompts for a confirmation.

Fontification of code blocks can give visual separation of text and code on the display
page. Set org-src-fontify-natively to non-nil to turn on native code fontification in
the Org buffer. The fontification follows the major mode used to edit the code block (see
org-src-lang-modes above).

To further customize the appearance of org-block for specific languages, customize
org-src-block-faces. The following example shades the background of regular blocks,
and colors source blocks only for Python and Emacs Lisp languages.

(require 'color)

(set-face-attribute 'org-block nil :background

(color-darken-name

(face-attribute 'default :background) 3))

(setq org-src-block-faces '(("emacs-lisp" (:background "#EEE2FF"))

("python" (:background "#E5FFB8"))))

16.11 Noweb Reference Syntax

Source code blocks can include references to other source code blocks, using a noweb4 style
syntax:

<<CODE-BLOCK-ID>>

where CODE-BLOCK-ID refers to either the ‘NAME’ of a single source code block, or a
collection of one or more source code blocks sharing the same ‘noweb-ref’ header argument
(see Section 16.3 [Using Header Arguments], page 230). Org can replace such references
with the source code of the block or blocks being referenced, or, in the case of a single
source code block named with ‘NAME’, with the results of an evaluation of that block.

The ‘noweb’ header argument controls expansion of noweb syntax references. Expansions
occur when source code blocks are evaluated, tangled, or exported.

‘no’ Default. No expansion of noweb syntax references in the body of the code when
evaluating, tangling, or exporting.

‘yes’ Expansion of noweb syntax references in the body of the code block when
evaluating, tangling, or exporting.

‘tangle’ Expansion of noweb syntax references in the body of the code block when
tangling. No expansion when evaluating or exporting.

‘strip-tangle’
Expansion of noweb syntax references in the body of the code block when
evaluating or exporting. Removes noweb syntax references when exporting.

‘no-export’
Expansion of noweb syntax references in the body of the code block when
evaluating or tangling. No expansion when exporting.

4 For noweb literate programming details, see https://www.cs.tufts.edu/~nr/noweb/.

https://www.cs.tufts.edu/~nr/noweb/

Chapter 16: Working with Source Code 253

‘strip-export’
Expansion of noweb syntax references in the body of the code block when
expanding prior to evaluating or tangling. Removes noweb syntax references
when exporting.

‘eval’ Expansion of noweb syntax references in the body of the code block only before
evaluating.

In the most simple case, the contents of a single source block is inserted within other
blocks. Thus, in following example,

#+NAME: initialization

#+BEGIN_SRC emacs-lisp

(setq sentence "Never a foot too far, even.")

#+END_SRC

#+BEGIN_SRC emacs-lisp :noweb yes

<<initialization>>

(reverse sentence)

#+END_SRC

the second code block is expanded as

#+BEGIN_SRC emacs-lisp :noweb yes

(setq sentence "Never a foot too far, even.")

(reverse sentence)

#+END_SRC

Note that noweb expansion does not automatically carry over ‘:var’ header arguments5.

You may also include the contents of multiple blocks sharing a common ‘noweb-ref’
header argument, which can be set at the file, subtree, or code block level. In the example
Org file shown next, the body of the source code in each block is extracted for concatenation
to a pure code file when tangled.

#+BEGIN_SRC sh :tangle yes :noweb yes :shebang #!/bin/sh

<<fullest-disk>>

#+END_SRC

5 In the following example, attempting to evaluate the second code block will give an error, because the
variables defined in the first code block will not be defined in the second block.

#+NAME: get-prompt

#+BEGIN_SRC emacs-lisp :var prompt="root> " :var command="ls"

(concat prompt command)

#+END_SRC

#+RESULTS: get-prompt

: root> ls

#+BEGIN_SRC emacs-lisp :noweb yes

<<get-prompt>>

#+END_SRC

The previous block is expanded without setting prompt and command values.

#+BEGIN_SRC emacs-lisp

(concat prompt command)

#+END_SRC

Chapter 16: Working with Source Code 254

* the mount point of the fullest disk

:PROPERTIES:

:header-args: :noweb-ref fullest-disk

:END:

** query all mounted disks

#+BEGIN_SRC sh

df \

#+END_SRC

** strip the header row

#+BEGIN_SRC sh

|sed '1d' \

#+END_SRC

** output mount point of fullest disk

#+BEGIN_SRC sh

|awk '{if (u < +$5) {u = +$5; m = $6}} END {print m}'

#+END_SRC

By default a newline separates each noweb reference concatenation. To use a different
separator, edit the ‘noweb-sep’ header argument.

Alternatively, Org can include the results of evaluation of a single code block rather
than its body [6. Evaluation occurs when parentheses, possibly including arguments, are
appended to the code block name, as shown below.

<<NAME(optional arguments)>>

Note that in this case, a code block name set by ‘NAME’ keyword is required; the reference
set by ‘noweb-ref’ will not work when evaluation is desired.

Here is an example that demonstrates how the exported content changes when noweb
style references are used with parentheses versus without. Given:

#+NAME: some-code

#+BEGIN_SRC python :var num=0 :results output :exports none

print(num*10)

#+END_SRC

this code block:

#+BEGIN_SRC text :noweb yes

<<some-code>>

#+END_SRC

expands to:

print(num*10)

Below, a similar noweb style reference is used, but with parentheses, while setting a
variable ‘num’ to 10:

6 The reference is evaluated with point at the referenced block, using its header arguments (including
inherited)

Chapter 16: Working with Source Code 255

#+BEGIN_SRC text :noweb yes

<<some-code(num=10)>>

#+END_SRC

Note that the expansion now contains the results of the code block ‘some-code’, not the
code block itself:

100

Noweb insertions honor prefix characters that appear before the noweb syntax reference.
This behavior is illustrated in the following example. Because the ‘<<example>>’ noweb ref-
erence appears behind the SQL comment syntax, each line of the expanded noweb reference
is commented. With:

#+NAME: example

#+BEGIN_SRC text

this is the

multi-line body of example

#+END_SRC

this code block:

#+BEGIN_SRC sql :noweb yes

---<<example>>

#+END_SRC

expands to:

#+BEGIN_SRC sql :noweb yes

---this is the

---multi-line body of example

#+END_SRC

Since this change does not affect noweb replacement text without newlines in them,
inline noweb references are acceptable.

This feature can also be used for management of indentation in exported code snippets.
With:

#+NAME: if-true

#+BEGIN_SRC python :exports none

print('do things when true')

#+end_src

#+name: if-false

#+begin_src python :exports none

print('do things when false')

#+end_src

this code block:

#+begin_src python :noweb yes :results output

if true:

<<if-true>>

else:

<<if-false>>

#+end_src

Chapter 16: Working with Source Code 256

expands to:

if true:

print('do things when true')

else:

print('do things when false')

This prefix behavior can be turned off in a block by setting the ‘noweb-prefix’ header
argument to ‘no’, as in:

#+BEGIN_SRC elisp :noweb-prefix no

(setq example-data "<<example>>")

#+END_SRC

which expands to:

(setq example-data "this is the

multi-line body of example")

When in doubt about the outcome of a source code block expansion, you can preview
the results with the following command:

C-c C-v v or C-c C-v C-v (org-babel-expand-src-block)
Expand the current source code block according to its header arguments and
pop open the results in a preview buffer.

16.12 Library of Babel

The “Library of Babel” is a collection of code blocks. Like a function library, these code
blocks can be called from other Org files. A collection of useful code blocks is available on
Worg. For remote code block evaluation syntax, see Section 16.5 [Evaluating Code Blocks],
page 239.

For any user to add code to the library, first save the code in regular code blocks of an
Org file, and then load the Org file with org-babel-lob-ingest, which is bound to C-c

C-v i.

16.13 Key bindings and Useful Functions

Many common Org mode key sequences are re-bound depending on the context.

Active key bindings in code blocks:

Key binding Function
C-c C-c org-babel-execute-src-block

C-c C-o org-babel-open-src-block-result

M-UP org-babel-load-in-session

M-DOWN org-babel-pop-to-session

Active key bindings in Org mode buffer:

Key binding Function
C-c C-v p or C-c C-v C-p org-babel-previous-src-block

C-c C-v n or C-c C-v C-n org-babel-next-src-block

C-c C-v e or C-c C-v C-e org-babel-execute-maybe

https://orgmode.org/worg/library-of-babel.html

Chapter 16: Working with Source Code 257

C-c C-v o or C-c C-v C-o org-babel-open-src-block-result

C-c C-v v or C-c C-v C-v org-babel-expand-src-block

C-c C-v u or C-c C-v C-u org-babel-goto-src-block-head

C-c C-v g or C-c C-v C-g org-babel-goto-named-src-block

C-c C-v r or C-c C-v C-r org-babel-goto-named-result

C-c C-v b or C-c C-v C-b org-babel-execute-buffer

C-c C-v s or C-c C-v C-s org-babel-execute-subtree

C-c C-v d or C-c C-v C-d org-babel-demarcate-block

C-c C-v t or C-c C-v C-t org-babel-tangle

C-c C-v f or C-c C-v C-f org-babel-tangle-file

C-c C-v c or C-c C-v C-c org-babel-check-src-block

C-c C-v j or C-c C-v C-j org-babel-insert-header-arg

C-c C-v l or C-c C-v C-l org-babel-load-in-session

C-c C-v i or C-c C-v C-i org-babel-lob-ingest

C-c C-v I or C-c C-v C-I org-babel-view-src-block-info

C-c C-v z or C-c C-v C-z org-babel-switch-to-session-with-code

C-c C-v a or C-c C-v C-a org-babel-sha1-hash

C-c C-v h or C-c C-v C-h org-babel-describe-bindings

C-c C-v x or C-c C-v C-x org-babel-do-key-sequence-in-edit-

buffer

16.14 Batch Execution

Org mode features, including working with source code facilities can be invoked from the
command line. This enables building shell scripts for batch processing, running automated
system tasks, and expanding Org mode’s usefulness.

The sample script shows batch processing of multiple files using org-babel-tangle.

#!/bin/sh

Tangle files with Org mode

#

emacs -Q --batch --eval "

(progn

(require 'ob-tangle)

(dolist (file command-line-args-left)

(with-current-buffer (find-file-noselect file)

(org-babel-tangle))))

" "$@"

Chapter 17: Miscellaneous 258

17 Miscellaneous

17.1 Completion

Org has in-buffer completions. Unlike minibuffer completions, which are useful for quick
command interactions, Org’s in-buffer completions are more suitable for content creation
in Org documents. Type one or more letters and invoke the hot key to complete the text
in-place. Depending on the context and the keys, Org offers different types of completions.
No minibuffer is involved. Such mode-specific hot keys have become an integral part of
Emacs and Org provides several shortcuts.

M-TAB

Complete word at point.

• At the beginning of an empty headline, complete TODO keywords.

• After ‘\’, complete TEX symbols supported by the exporter.

• After ‘:’ in a headline, complete tags. Org deduces the list of tags from
the ‘TAGS’ in-buffer option (see Section 6.2 [Setting Tags], page 63), the
variable org-tag-alist, or from all tags used in the current buffer.

• After ‘:’ and not in a headline, complete property keys. The list of keys is
constructed dynamically from all keys used in the current buffer.

• After ‘[[’, complete link abbreviations (see Section 4.7 [Link Abbrevia-
tions], page 47).

• After ‘[[*’, complete headlines in the current buffer so that they can be
used in search links like: ‘[[*find this headline]]’

• After ‘#+’, complete the special keywords like ‘TYP_TODO’ or file-specific
‘OPTIONS’. After option keyword is complete, pressing M-TAB again inserts
example settings for this keyword.

• After ‘STARTUP’ keyword, complete startup items.

• When point is anywhere else, complete dictionary words using Ispell.

17.2 Structure Templates

With just a few keystrokes, it is possible to insert empty structural blocks, such as
‘#+BEGIN_SRC’ . . . ‘#+END_SRC’, or to wrap existing text in such a block.

C-c C-, (org-insert-structure-template)
Prompt for a type of block structure, and insert the block at point. If the region
is active, it is wrapped in the block. First prompts the user for keys, which are
used to look up a structure type from the variable below. If the key is TAB, RET,
or SPC, the user is prompted to enter a block type.

Available structure types are defined in org-structure-template-alist, see the doc-
string for adding or changing values.

Org Tempo expands snippets to structures defined in org-structure-template-alist

and org-tempo-keywords-alist. For example, < s TAB creates a code block. Enable it by
customizing org-modules or add ‘(require 'org-tempo)’ to your Emacs init file1.

1 For more information, please refer to the commentary section in ‘org-tempo.el’.

Chapter 17: Miscellaneous 259

a ‘#+BEGIN_EXPORT ascii’ . . . ‘#+END_EXPORT’
c ‘#+BEGIN_CENTER’ . . . ‘#+END_CENTER’
C ‘#+BEGIN_COMMENT’ . . . ‘#+END_COMMENT’
e ‘#+BEGIN_EXAMPLE’ . . . ‘#+END_EXAMPLE’
E ‘#+BEGIN_EXPORT’ . . . ‘#+END_EXPORT’
h ‘#+BEGIN_EXPORT html’ . . . ‘#+END_EXPORT’
l ‘#+BEGIN_EXPORT latex’ . . . ‘#+END_EXPORT’
q ‘#+BEGIN_QUOTE’ . . . ‘#+END_QUOTE’
s ‘#+BEGIN_SRC’ . . . ‘#+END_SRC’
v ‘#+BEGIN_VERSE’ . . . ‘#+END_VERSE’

17.3 Speed Keys

Single keystrokes can execute custom commands in an Org file when point is on a headline.
Without the extra burden of a meta or modifier key, Speed Keys can speed navigation or
execute custom commands. Besides faster navigation, Speed Keys may come in handy on
small mobile devices that do not have full keyboards. Speed Keys may also work on TTY
devices known for their problems when entering Emacs key chords.

By default, Org has Speed Keys disabled. To activate Speed Keys, set the variable
org-use-speed-commands to a non-nil value. To trigger a Speed Key, point must be at
the beginning of an Org headline, before any of the stars.

Org comes with a pre-defined list of Speed Keys. To add or modify Speed Keys, customize
the option org-speed-commands. For more details, see the variable’s docstring. With Speed
Keys activated, M-x org-speed-command-help, or ? when point is at the beginning of an
Org headline, shows currently active Speed Keys, including the user-defined ones.

17.4 A Cleaner Outline View

Org’s outline with stars and no indents can look cluttered for short documents. For book-
like long documents, the effect is not as noticeable. Org provides an alternate stars and
indentation scheme, as shown on the right in the following table. It displays only one star
and indents text to line up with the heading:

* Top level headline | * Top level headline

** Second level | * Second level

*** Third level | * Third level

some text | some text

*** Third level | * Third level

more text | more text

* Another top level headline | * Another top level headline

Org can achieve this in two ways, (1) by just displaying the buffer in this way without
changing it, or (2) by actually indenting every line in the desired amount with hard spaces
and hiding leading stars.

Chapter 17: Miscellaneous 260

17.4.1 Org Indent Mode

To display the buffer in the indented view, activate Org Indent minor mode, using M-x

org-indent-mode. Text lines that are not headlines are prefixed with virtual spaces to
vertically align with the headline text2.

To make more horizontal space, the headlines are shifted by two characters. Configure
org-indent-indentation-per-level variable for a different number.

By default, Org Indent mode turns off org-adapt-indentation and does hide leading
stars by locally setting org-hide-leading-stars to t: only one star on each headline
is visible, the rest are masked with the same font color as the background. If you want
to customize this default behavior, see org-indent-mode-turns-on-hiding-stars and
org-indent-mode-turns-off-org-adapt-indentation.

To globally turn on Org Indent mode for all files, customize the variable org-startup-
indented. To control it for individual files, use ‘STARTUP’ keyword as follows:

#+STARTUP: indent

#+STARTUP: noindent

17.4.2 Hard indentation

It is possible to use hard spaces to achieve the indentation instead, if the bare ASCII file
should have the indented look also outside Emacs3. With Org’s support, you have to indent
all lines to line up with the outline headers. You would use these settings4:

(setq org-adapt-indentation t

org-hide-leading-stars t

org-odd-levels-only t)

Indentation of text below headlines (org-adapt-indentation)
The first setting modifies paragraph filling, line wrapping, and structure editing
commands to preserving or adapting the indentation as appropriate.

Hiding leading stars (org-hide-leading-stars)
The second setting makes leading stars invisible by applying the face org-hide
to them. For per-file preference, use these file ‘STARTUP’ options:

#+STARTUP: hidestars

#+STARTUP: showstars

Odd levels (org-odd-levels-only)
The third setting makes Org use only odd levels, 1, 3, 5, . . . , in the outline to
create more indentation. On a per-file level, control this with:

#+STARTUP: odd

#+STARTUP: oddeven

To convert a file between single and double stars layouts, use M-x org-convert-

to-odd-levels and M-x org-convert-to-oddeven-levels.

2 Org Indent mode also sets wrap-prefix correctly for indenting and wrapping long lines of headlines or
text. This minor mode also handles Visual Line mode and directly applied settings through word-wrap.

3 This works, but requires extra effort. Org Indent mode is more convenient for most applications.
4 org-adapt-indentation can also be set to ‘'headline-data’, in which case only data lines below the

headline will be indented.

Chapter 17: Miscellaneous 261

17.5 Execute commands in the active region

When in an Org buffer and the region is active, some commands will apply to all the subtrees
in the active region. For example, hitting C-c C-s when multiple headlines are within the
active region will successively prompt you for a new schedule date and time. To disable
this, set the option org-loop-over-headlines-in-active-region to non-t, activate the
region and run the command normally.

org-agenda-loop-over-headlines-in-active-region is the equivalent option of the
agenda buffer, where you can also use [bulk editing of selected entries], page 132.

Not all commands can loop in the active region and what subtrees or headlines are
considered can be refined: see the docstrings of these options for more details.

17.6 Dynamic Headline Numbering

The Org Num minor mode, toggled with M-x org-num-mode, displays outline numbering
on top of headlines. It also updates it automatically upon changes to the structure of the
document.

By default, all headlines are numbered. You can limit numbering to specific headlines
according to their level, tags, ‘COMMENT’ keyword, or ‘UNNUMBERED’ property. Set org-num-
max-level, org-num-skip-tags, org-num-skip-commented, org-num-skip-unnumbered,
or org-num-skip-footnotes accordingly.

If org-num-skip-footnotes is non-nil, footnotes sections (see Section 12.10 [Creating
Footnotes], page 150) are not numbered either.

You can control how the numbering is displayed by setting org-num-face and org-num-

format-function.

You can also turn this mode globally for all Org files by setting the option org-startup-

numerated to ‘t’, or locally on a file by using ‘#+startup: num’.

17.7 The Very Busy C-c C-c Key

The C-c C-c key in Org serves many purposes depending on the context. It is probably
the most over-worked, multipurpose key combination in Org. Its uses are well documented
throughout this manual, but here is a consolidated list for easy reference.

• If column view (see Section 7.5 [Column View], page 72) is on, exit column view.

• If any highlights shown in the buffer from the creation of a sparse tree, or from clock
display, remove such highlights.

• If point is in one of the special ‘KEYWORD’ lines, scan the buffer for these lines and update
the information. Also reset the Org file cache used to temporary store the contents of
URLs used as values for keywords like ‘SETUPFILE’.

• If point is inside a table, realign the table.

• If point is on a ‘TBLFM’ keyword, re-apply the formulas to the entire table.

• If the current buffer is a capture buffer, close the note and file it. With a prefix
argument, also jump to the target location after saving the note.

• If point is on a ‘<<<target>>>’, update radio targets and corresponding links in this
buffer.

Chapter 17: Miscellaneous 262

• If point is on a property line or at the start or end of a property drawer, offer property
commands.

• If point is at a footnote reference, go to the corresponding definition, and vice versa.

• If point is on a statistics cookie, update it.

• If point is in a plain list item with a checkbox, toggle the status of the checkbox.

• If point is on a numbered item in a plain list, renumber the ordered list.

• If point is on the ‘#+BEGIN’ line of a dynamic block, the block is updated.

• If point is at a timestamp, fix the day name in the timestamp.

17.8 Summary of In-Buffer Settings

In-buffer settings start with ‘#+’, followed by a keyword, a colon, one or more spaces, and
then a word for each setting. Org accepts multiple settings on the same line. Org also
accepts multiple lines for a keyword. This manual describes these settings throughout. A
summary follows here.

C-c C-c activates any changes to the in-buffer settings. Closing and reopening the Org
file in Emacs also activates the changes.

‘#+ARCHIVE: %s_done::’
Sets the archive location of the agenda file. The corresponding variable is
org-archive-location.

‘#+CATEGORY’
Sets the category of the agenda file, which applies to the entire document.

‘#+COLUMNS: %25ITEM ...’
Set the default format for columns view. This format applies when columns
view is invoked in locations where no ‘COLUMNS’ property applies.

‘#+CONSTANTS: name1=value1 ...’
Set file-local values for constants that table formulas can use. This line sets
the local variable org-table-formula-constants-local. The global version
of this variable is org-table-formula-constants.

‘#+FILETAGS: :tag1:tag2:tag3:’
Set tags that all entries in the file inherit from, including the top-level entries.

‘#+LINK: linkword replace’
Each line specifies one abbreviation for one link. Use multiple ‘LINK’ keywords
for more, see Section 4.7 [Link Abbreviations], page 47. The corresponding
variable is org-link-abbrev-alist.

‘#+PRIORITIES: highest lowest default’
This line sets the limits and the default for the priorities. All three must be
either letters A–Z or numbers 0–9. The highest priority must have a lower
ASCII number than the lowest priority.

‘#+PROPERTY: Property_Name Value’
This line sets a default inheritance value for entries in the current buffer, most
useful for specifying the allowed values of a property.

Chapter 17: Miscellaneous 263

‘#+SETUPFILE: file’
The setup file or a URL pointing to such file is for additional in-buffer settings.
Org loads this file and parses it for any settings in it when Org opens the main
file. If URL is specified, the contents are downloaded and stored in a temporary
file cache. C-c C-c on the settings line re-parses and re-loads the file, and also
resets the temporary file cache.

Org also parses and loads in-buffer settings from the setup file during normal
exporting process. Org parses the in-buffer settings as if it was included in the
containing Org buffer. The rest of the contents of setup file is ignored.

To visit the setup file—not a URL—use C-c ' while point is on the line with
the setup file name.

‘#+STARTUP:’
Startup options Org uses when first visiting a file.

The first set of options deals with the initial visibility of the outline tree. The
corresponding variable for global default settings is org-startup-folded with
a default value of showeverything.

‘overview’ Top-level headlines only.
‘content’ All headlines.
‘showall’ No folding on any entry.
‘show2levels’ Headline levels 1-2.
‘show3levels’ Headline levels 1-3.
‘show4levels’ Headline levels 1-4.
‘show5levels’ Headline levels 1-5.
‘showeverything’ Show even drawer contents.

Dynamic virtual indentation is controlled by the variable org-startup-

indented5.

‘indent’ Start with Org Indent mode turned on.
‘noindent’ Start with Org Indent mode turned off.

Dynamic virtual numeration of headlines is controlled by the variable
org-startup-numerated.

‘num’ Start with Org num mode turned on.
‘nonum’ Start with Org num mode turned off.

Aligns tables consistently upon visiting a file. The corresponding variable is
org-startup-align-all-tables with nil as default value.

‘align’ Align all tables.
‘noalign’ Do not align tables on startup.

Shrink table columns with a width cookie. The corresponding variable is
org-startup-shrink-all-tables with nil as default value.

When visiting a file, inline images can be automatically displayed. The corre-
sponding variable is org-startup-with-inline-images, with a default value
nil to avoid delays when visiting a file.

5 Note that Org Indent mode also sets the wrap-prefix property, such that Visual Line mode (or purely
setting word-wrap) wraps long lines, including headlines, correctly indented.

Chapter 17: Miscellaneous 264

‘inlineimages’ Show inline images.
‘noinlineimages’ Do not show inline images on startup.

Bracket links in Org buffers are displayed hiding the link path and brackets. For
example, ‘[[https://orgmode.org][Org Website]]’ is, by default, displayed
as “Org Website”, hiding the link itself and just displaying its description.
Alternatively, the links can be displayed in full. The corresponding variable is
org-link-descriptive.

‘descriptivelinks’ Hide path and brackets in links.
‘literallinks’ Do not hide anything.

Logging the closing and reopening of TODO items and clock intervals can be
configured using these options (see variables org-log-done, org-log-note-
clock-out, and org-log-repeat).

‘logdone’ Record a timestamp when an item is marked as done.
‘lognotedone’ Record timestamp and a note when DONE.
‘nologdone’ Do not record when items are marked as done.
‘logrepeat’ Record a time when reinstating a repeating item.
‘lognoterepeat’ Record a note when reinstating a repeating item.
‘nologrepeat’ Do not record when reinstating repeating item.
‘lognoteclock-out’ Record a note when clocking out.
‘nolognoteclock-out’ Do not record a note when clocking out.
‘logreschedule’ Record a timestamp when scheduling time changes.
‘lognotereschedule’ Record a note when scheduling time changes.
‘nologreschedule’ Do not record when a scheduling date changes.
‘logredeadline’ Record a timestamp when deadline changes.
‘lognoteredeadline’ Record a note when deadline changes.
‘nologredeadline’ Do not record when a deadline date changes.
‘logrefile’ Record a timestamp when refiling.
‘lognoterefile’ Record a note when refiling.
‘nologrefile’ Do not record when refiling.

Here are the options for hiding leading stars in outline headings, and for indent-
ing outlines. The corresponding variables are org-hide-leading-stars and
org-odd-levels-only, both with a default setting nil (meaning ‘showstars’
and ‘oddeven’).

‘hidestars’ Make all but one of the stars starting a headline invisible.
‘showstars’ Show all stars starting a headline.
‘indent’ Virtual indentation according to outline level.
‘noindent’ No virtual indentation according to outline level.
‘odd’ Allow only odd outline levels (1, 3, . . .).
‘oddeven’ Allow all outline levels.

To turn on custom format overlays over timestamps (variables org-display-
custom-times and org-timestamp-custom-formats), use:

‘customtime’ Overlay custom time format.

The following options influence the table spreadsheet (variable
constants-unit-system).

‘constcgs’ ‘constants.el’ should use the c-g-s unit system.

Chapter 17: Miscellaneous 265

‘constSI’ ‘constants.el’ should use the SI unit system.

To influence footnote settings, use the following keywords. The corresponding
variables are org-footnote-define-inline, org-footnote-auto-label, and
org-footnote-auto-adjust.

‘fninline’ Define footnotes inline.
‘fnnoinline’ Define footnotes in separate section.
‘fnlocal’ Define footnotes near first reference, but not inline.
‘fnprompt’ Prompt for footnote labels.
‘fnauto’ Create ‘[fn:1]’-like labels automatically (default).
‘fnconfirm’ Offer automatic label for editing or confirmation.
‘fnadjust’ Automatically renumber and sort footnotes.
‘nofnadjust’ Do not renumber and sort automatically.
‘fnanon’ Create anonymous footnotes with org-footnote-new.

To hide blocks or drawers on startup, use these keywords. The corresponding
variables are org-hide-block-startup and org-hide-drawer-startup.

‘hideblocks’ Hide all begin/end blocks on startup.
‘nohideblocks’ Do not hide blocks on startup.
‘hidedrawers’ Hide all begin/end blocks on startup.
‘nohidedrawers’ Do not hide blocks on startup.

The display of entities as UTF-8 characters is governed by the variable org-pretty-

entities and the keywords

‘entitiespretty’ Show entities as UTF-8 characters where possible.
‘entitiesplain’ Leave entities plain.

‘#+TAGS: TAG1(c1) TAG2(c2)’
These lines (several such lines are allowed) specify the valid tags in this file,
and (potentially) the corresponding fast tag selection keys. The corresponding
variable is org-tag-alist.

‘#+TODO:’, ‘#+SEQ_TODO:’, ‘#+TYP_TODO:’
These lines set the TODO keywords and their interpretation in the current file.
The corresponding variable is org-todo-keywords.

17.9 Regular Expressions

Org, as an Emacs mode, makes use of Elisp regular expressions for searching, matching
and filtering. Elisp regular expressions have a somewhat different syntax then some com-
mon standards. Most notably, alternation is indicated using ‘\|’ and matching groups are
denoted by ‘\(...\)’. For example the string ‘home\|work’ matches either ‘home’ or ‘work’.

For more information, see Section “Regexps” in emacs.

17.10 Org Syntax

A reference document providing a formal description of Org’s syntax is available as a draft
on Worg, initially written by Nicolas Goaziou. It defines Org’s core internal concepts such
as “headlines”, “sections”, “affiliated keywords”, “(greater) elements” and “objects”. Each
part of an Org document belongs to one of the previous categories.

https://orgmode.org/worg/org-syntax.html
https://orgmode.org/worg/org-syntax.html

Chapter 17: Miscellaneous 266

To explore the abstract structure of an Org buffer, run this in a buffer:

M-: (org-element-parse-buffer) <RET>

It outputs a list containing the buffer’s content represented as an abstract structure. The
export engine relies on the information stored in this list. Most interactive commands—e.g.,
for structure editing—also rely on the syntactic meaning of the surrounding context.

You can probe the syntax of your documents with the command

M-x org-lint <RET>

It runs a number of checks to find common mistakes. It then displays their location in
a dedicated buffer, along with a description and a “trust level”, since false-positive are
possible. From there, you can operate on the reports with the following keys:

C-j, TAB Display the offending line
RET Move point to the offending line
g Check the document again
h Hide all reports from the same checker
i Also remove them from all subsequent checks
S Sort reports by the column at point

17.11 Context Dependent Documentation

C-c C-x I in an Org file tries to open a suitable section of the Org manual depending on
the syntax at point. For example, using it on a headline displays “Document Structure”
section.

q closes the Info window.

17.12 Escape Character

You may sometimes want to write text that looks like Org syntax, but should really read as
plain text. Org may use a specific escape character in some situations, i.e., a backslash in
macros (see Section 13.5 [Macro Replacement], page 159) and links (see Section 4.1 [Link
Format], page 39), or a comma in source and example blocks (see Section 12.6 [Literal
Examples], page 146). In the general case, however, we suggest using the zero width space.
You can insert one with any of the following:

C-x 8 <RET> zero width space <RET>

C-x 8 <RET> 200B <RET>

For example, in order to write ‘[[1,2]]’ as-is in your document, you may write instead

[X[1,2]]

where ‘X’ denotes the zero width space character.

17.13 Code Evaluation and Security Issues

Unlike plain text, running code comes with risk. Each source code block, in terms of risk, is
equivalent to an executable file. Org therefore puts a few confirmation prompts by default.
This is to alert the casual user from accidentally running untrusted code.

For users who do not run code blocks or write code regularly, Org’s default settings should
suffice. However, some users may want to tweak the prompts for fewer interruptions. To

Chapter 17: Miscellaneous 267

weigh the risks of automatic execution of code blocks, here are some details about code
evaluation.

Org evaluates code in the following circumstances:

Source code blocks
Org evaluates source code blocks in an Org file during export. Org also evaluates
a source code block with the C-c C-c key chord. Users exporting or running
code blocks must load files only from trusted sources. Be wary of customizing
variables that remove or alter default security measures.

[User Option]org-confirm-babel-evaluate
When t, Org prompts the user for confirmation before executing each
code block. When nil, Org executes code blocks without prompting the
user for confirmation. When this option is set to a custom function, Org
invokes the function with these two arguments: the source code language
and the body of the code block. The custom function must return either
a t or nil, which determines if the user is prompted. Each source code
language can be handled separately through this function argument.

For example, here is how to execute ditaa code blocks without prompting:

(defun my-org-confirm-babel-evaluate (lang body)

(not (string= lang "ditaa"))) ;don't ask for ditaa

(setq org-confirm-babel-evaluate #'my-org-confirm-babel-evaluate)

Following ‘shell’ and ‘elisp’ links
Org has two link types that can directly evaluate code (see Section 4.4 [Ex-
ternal Links], page 41). Because such code is not visible, these links have a
potential risk. Org therefore prompts the user when it encounters such links.
The customization variables are:

[User Option]org-link-shell-confirm-function
Function that prompts the user before executing a shell link.

[User Option]org-link-elisp-confirm-function
Function that prompts the user before executing an Emacs Lisp link.

Formulas in tables
Formulas in tables (see Section 3.5 [The Spreadsheet], page 24) are code that
is evaluated either by the Calc interpreter, or by the Emacs Lisp interpreter.

17.14 Interaction with Other Packages

Org’s compatibility and the level of interaction with other Emacs packages are documented
here.

17.14.1 Packages that Org cooperates with

‘calc.el’ by Dave Gillespie
Org uses the Calc package for implementing spreadsheet functionality in its
tables (see Section 3.5 [The Spreadsheet], page 24). Org also uses Calc for
embedded calculations. See Section “Embedded Mode” in calc.

Chapter 17: Miscellaneous 268

‘constants.el’ by Carsten Dominik
Org can use names for constants in formulas in tables. Org can also use cal-
culation suffixes for units, such as ‘M’ for ‘Mega’. For a standard collection
of such constants, install the ‘constants’ package. Install version 2.0 of this
package, available at https://github.com/cdominik/constants-for-Emacs.
Org checks if the function constants-get has been autoloaded. Installation
instructions are in the file ‘constants.el’.

‘cdlatex.el’ by Carsten Dominik
Org mode can make use of the CDLATEX package to efficiently enter LATEX
fragments into Org files. See Section 12.5.3 [CDLATEX mode], page 145.

‘imenu.el’ by Ake Stenhoff and Lars Lindberg
Imenu creates dynamic menus based on an index of items in a file. Org mode
supports Imenu menus. Enable it with a mode hook as follows:

(add-hook 'org-mode-hook

(lambda () (imenu-add-to-menubar "Imenu")))

By default the index is two levels deep—you can modify the depth using the
option org-imenu-depth.

Org activates Imenu support only in the buffers opened after loading Imenu
library. To enable Imenu support in an already opened Org buffer, reload Org.

‘speedbar.el’ by Eric M. Ludlam
Speedbar package creates a special Emacs frame for displaying files and index
items in files. Org mode supports Speedbar; users can drill into Org files directly
from the Speedbar. The < in the Speedbar frame tweaks the agenda commands
to that file or to a subtree.

‘table.el’ by Takaaki Ota
Complex ASCII tables with automatic line wrapping, column- and
row-spanning, and alignment can be created using the Emacs table package
by Takaaki Ota. Org mode recognizes such tables and exports them properly.
C-c ' to edit these tables in a special buffer, much like Org’s code blocks.
Because of interference with other Org mode functionality, Takaaki Ota tables
cannot be edited directly in the Org buffer.

C-c ' (org-edit-special)
Edit a ‘table.el’ table. Works when point is in a ‘table.el’ table.

C-c ~ (org-table-create-with-table.el)
Insert a ‘table.el’ table. If there is already a table at point,
this command converts it between the ‘table.el’ format and the
Org mode format. See the documentation string of the command
org-convert-table for the restrictions under which this is possi-
ble.

17.14.2 Packages that conflict with Org mode

In Emacs, shift-selection combines motions of point with shift key to enlarge regions. Emacs
sets this mode by default. This conflicts with Org’s use of S-<cursor> commands to change

https://github.com/cdominik/constants-for-Emacs

Chapter 17: Miscellaneous 269

timestamps, TODO keywords, priorities, and item bullet types, etc. Since S-<cursor> com-
mands outside specific contexts do not do anything, Org offers the variable org-support-

shift-select for customization. Org mode accommodates shift selection by (i) making it
available outside the special contexts where special commands apply, and (ii) extending an
existing active region even if point moves across a special context.

‘cua.el’ by Kim F. Storm
Org key bindings conflict with S-<cursor> keys used by CUA mode. For Org to
relinquish these bindings to CUA mode, configure the variable org-replace-

disputed-keys. When set, Org moves the following key bindings in Org files,
and in the agenda buffer—but not during date selection.

S-UP ⇒ M-p S-DOWN ⇒ M-n

S-LEFT ⇒ M-- S-RIGHT ⇒ M-+

C-S-LEFT ⇒ M-S-- C-S-RIGHT ⇒ M-S-+

Yes, these are unfortunately more difficult to remember. If you want to have
other replacement keys, look at the variable org-disputed-keys.

‘ecomplete.el’ by Lars Magne Ingebrigtsen
Ecomplete provides “electric” address completion in address header lines in
message buffers. Sadly Orgtbl mode cuts Ecomplete’s power supply: no com-
pletion happens when Orgtbl mode is enabled in message buffers while entering
text in address header lines. If one wants to use ecomplete one should not fol-
low the advice to automagically turn on Orgtbl mode in message buffers (see
Section 3.4 [Orgtbl Mode], page 23), but instead—after filling in the message
headers—turn on Orgtbl mode manually when needed in the messages body.

‘filladapt.el’ by Kyle Jones
Org mode tries to do the right thing when filling paragraphs, list items and
other elements. Many users reported problems using both ‘filladapt.el’ and
Org mode, so a safe thing to do is to disable filladapt like this:

(add-hook 'org-mode-hook 'turn-off-filladapt-mode)

‘viper.el’ by Michael Kifer
Viper uses C-c / and therefore makes this key not access the corresponding
Org mode command org-sparse-tree. You need to find another key for this
command, or override the key in viper-vi-global-user-map with

(define-key viper-vi-global-user-map "C-c /" 'org-sparse-tree)

‘windmove.el’ by Hovav Shacham
This package also uses the S-<cursor> keys, so everything written in the para-
graph above about CUA mode also applies here. If you want to make the
windmove function active in locations where Org mode does not have special
functionality on S-<cursor>, add this to your configuration:

;; Make windmove work in Org mode:

(add-hook 'org-shiftup-final-hook 'windmove-up)

(add-hook 'org-shiftleft-final-hook 'windmove-left)

(add-hook 'org-shiftdown-final-hook 'windmove-down)

(add-hook 'org-shiftright-final-hook 'windmove-right)

Chapter 17: Miscellaneous 270

‘yasnippet.el’
The way Org mode binds the TAB key (binding to [tab] instead of "\t")
overrules YASnippet’s access to this key. The following code fixed this problem:

(add-hook 'org-mode-hook

(lambda ()

(setq-local yas/trigger-key [tab])

(define-key yas/keymap [tab] 'yas/next-field-or-maybe-expand)))

The latest version of YASnippet does not play well with Org mode. If the above
code does not fix the conflict, start by defining the following function:

(defun yas/org-very-safe-expand ()

(let ((yas/fallback-behavior 'return-nil)) (yas/expand)))

Then, tell Org mode to use that function:

(add-hook 'org-mode-hook

(lambda ()

(make-variable-buffer-local 'yas/trigger-key)

(setq yas/trigger-key [tab])

(add-to-list 'org-tab-first-hook 'yas/org-very-safe-expand)

(define-key yas/keymap [tab] 'yas/next-field)))

17.15 Using Org on a TTY

Org provides alternative key bindings for TTY and modern mobile devices that cannot
perform movement commands on point and key bindings with modifier keys. Some of these
workarounds may be more cumbersome than necessary. Users should look into customizing
these further based on their usage needs. For example, the normal S-<cursor> for editing
timestamp might be better with C-c . chord.

Default Alternative 1 Speed key Alternative 2
S-TAB C-u TAB C

M-LEFT C-c C-x l l Esc LEFT

M-S-LEFT C-c C-x L L

M-RIGHT C-c C-x r r Esc RIGHT

M-S-RIGHT C-c C-x R R

M-UP C-c C-x u Esc UP

M-S-UP C-c C-x U U

M-DOWN C-c C-x d Esc DOWN

M-S-DOWN C-c C-x D D

S-RET C-c C-x c

M-RET C-c C-x m Esc RET

M-S-RET C-c C-x M

S-LEFT C-c LEFT

S-RIGHT C-c RIGHT

S-UP C-c UP

S-DOWN C-c DOWN

C-S-LEFT C-c C-x LEFT

C-S-RIGHT C-c C-x RIGHT

Chapter 17: Miscellaneous 271

C-c C-, C-c C-x s

17.16 Protocols for External Access

Org protocol is a tool to trigger custom actions in Emacs from external applications. Any
application that supports calling external programs with an URL as argument may be used
with this functionality. For example, you can configure bookmarks in your web browser
to send a link to the current page to Org and create a note from it using capture (see
Section 10.1 [Capture], page 99). You can also create a bookmark that tells Emacs to open
the local source file of a remote website you are browsing.

In order to use Org protocol from an application, you need to register ‘org-protocol://’
as a valid scheme-handler. External calls are passed to Emacs through the ‘emacsclient’
command, so you also need to ensure an Emacs server is running. More precisely, when the
application calls

emacsclient "org-protocol://PROTOCOL?key1=val1&key2=val2"

Emacs calls the handler associated to PROTOCOL with argument ‘(:key1 val1 :key2

val2)’.

Org protocol comes with three predefined protocols, detailed in the following sections.
Configure org-protocol-protocol-alist to define your own.

17.16.1 The store-link protocol

Using the store-link handler, you can copy links, to that they can be inserted using M-x

org-insert-link or yanking. More precisely, the command

emacsclient "org-protocol://store-link?url=URL&title=TITLE"

stores the following link:

[[URL][TITLE]]

In addition, URL is pushed on the kill-ring for yanking. You need to encode URL and
TITLE if they contain slashes, and probably quote those for the shell.

To use this feature from a browser, add a bookmark with an arbitrary name, e.g., ‘Org:
store-link’ and enter this as Location:

javascript:location.href='org-protocol://store-link?' +

new URLSearchParams({url:location.href, title:document.title});

Title is an optional parameter. Another expression was recommended earlier:

javascript:location.href='org-protocol://store-link?url='+

encodeURIComponent(location.href);

The latter form is compatible with older Org versions from 9.0 to 9.4.

17.16.2 The capture protocol

Activating the “capture” handler pops up a ‘Capture’ buffer in Emacs, using a capture
template.

emacsclient "org-protocol://capture?template=X&url=URL&title=TITLE&body=BODY"

To use this feature, add a bookmark with an arbitrary name, e.g., ‘Org: capture’, and
enter this as ‘Location’:

Chapter 17: Miscellaneous 272

javascript:location.href='org-protocol://capture?' +

new URLSearchParams({

template: 'x', url: window.location.href,

title: document.title, body: window.getSelection()});

You might have seen another expression:

javascript:location.href='org-protocol://capture?template=x'+

'&url='+encodeURIComponent(window.location.href)+

'&title='+encodeURIComponent(document.title)+

'&body='+encodeURIComponent(window.getSelection());

It is a bit more cluttered than the former one, but it is compatible with previous Org
versions 9.0-9.4. In these versions encoding of space as “+” character was not supported by
URI decoder.

The capture template to be used can be specified in the bookmark (like ‘X’ above). If
unspecified, the template key is set in the variable org-protocol-default-template-key.
The following template placeholders are available:

%:link The URL

%:description The webpage title

%:annotation Equivalent to [[%:link][%:description]]

%i The selected text

17.16.3 The open-source protocol

The open-source handler is designed to help with editing local sources when reading a
document. To that effect, you can use a bookmark with the following location:

javascript:location.href='org-protocol://open-source?&url='+

encodeURIComponent(location.href)

The variable org-protocol-project-alistmaps URLs to local file names, by stripping
URL parameters from the end and replacing the :base-url with :working-directory and
:online-suffix with :working-suffix. For example, assuming you own a local copy of
‘https://orgmode.org/worg/’ contents at ‘/home/user/worg’, you can set org-protocol-
project-alist to the following

(setq org-protocol-project-alist

'(("Worg"

:base-url "https://orgmode.org/worg/"

:working-directory "/home/user/worg/"

:online-suffix ".html"

:working-suffix ".org")))

If you are now browsing ‘https://orgmode.org/worg/org-contrib/org-protocol.html’
and find a typo or have an idea about how to enhance the documentation, simply click the
bookmark and start editing.

However, such mapping may not always yield the desired results. Suppose you
maintain an online store located at ‘https://example.com/’. The local sources reside in
‘/home/user/example/’. It is common practice to serve all products in such a store through
one file and rewrite URLs that do not match an existing file on the server. That way, a
request to ‘https://example.com/print/posters.html’ might be rewritten on the server

Chapter 17: Miscellaneous 273

to something like ‘https://example.com/shop/products.php/posters.html.php’. The
open-source handler probably cannot find a file named ‘/home/user/example/print/posters.html.php’
and fails.

Such an entry in org-protocol-project-alist may hold an additional property
:rewrites. This property is a list of cons cells, each of which maps a regular expression
to a path relative to the :working-directory.

Now map the URL to the path ‘/home/user/example/products.php’ by adding
:rewrites rules like this:

(setq org-protocol-project-alist

'(("example.com"

:base-url "https://example.com/"

:working-directory "/home/user/example/"

:online-suffix ".php"

:working-suffix ".php"

:rewrites (("example.com/print/" . "products.php")

("example.com/$" . "index.php")))))

Since ‘example.com/$’ is used as a regular expression, it maps ‘https://example.com/’,
‘https://example.com’, ‘https://www.example.com/’ and similar to ‘/home/user/example/index.php’.

The :rewrites rules are searched as a last resort if and only if no existing file name is
matched.

Two functions can help you filling org-protocol-project-alist with valid contents:
org-protocol-create and org-protocol-create-for-org. The latter is of use if you’re
editing an Org file that is part of a publishing project.

17.17 Org Crypt

Org Crypt encrypts the text of an entry, but not the headline, or properties. Behind the
scene, it uses the epa to encrypt and decrypt files, and EasyPG needs a correct gnupg setup.

Any text below a headline that has a ‘crypt’ tag is automatically encrypted when the
file is saved. To use a different tag, customize the org-crypt-tag-matcher setting.

Here is a suggestion for Org Crypt settings in Emacs init file:

(require 'org-crypt)

(org-crypt-use-before-save-magic)

(setq org-tags-exclude-from-inheritance '("crypt"))

(setq org-crypt-key nil)

;; GPG key to use for encryption.

;; nil means use symmetric encryption unconditionally.

;; "" means use symmetric encryption unless heading sets CRYPTKEY property.

(setq auto-save-default nil)

;; Auto-saving does not cooperate with org-crypt.el: so you need to

;; turn it off if you plan to use org-crypt.el quite often. Otherwise,

;; you'll get an (annoying) message each time you start Org.

Chapter 17: Miscellaneous 274

;; To turn it off only locally, you can insert this:

;;

;; # -*- buffer-auto-save-file-name: nil; -*-

It’s possible to use different keys for different headings by specifying the respective key
as property ‘CRYPTKEY’, e.g.:

* Totally secret :crypt:

:PROPERTIES:

:CRYPTKEY: 0x0123456789012345678901234567890123456789

:END:

Note that the ‘CRYPTKEY’ property is only effective when org-crypt-key is non-nil. If
org-crypt-key is nil, Org uses symmetric encryption unconditionally.

Excluding the ‘crypt’ tag from inheritance prevents already encrypted text from being
encrypted again.

17.18 Org Mobile

Org Mobile is a protocol for synchronizing Org files between Emacs and other applications,
e.g., on mobile devices. It enables offline-views and capture support for an Org mode system
that is rooted on a “real” computer. The external application can also record changes to
existing entries.

This appendix describes Org’s support for agenda view formats compatible with Org
Mobile. It also describes synchronizing changes, such as to notes, between the mobile
application and the computer.

To change tags and TODO states in the mobile application, first customize the variables
org-todo-keywords, org-tag-alist and org-tag-persistent-alist. These should
cover all the important tags and TODO keywords, even if Org files use only some of them.
Though the mobile application is expected to support in-buffer settings, it is required to
understand TODO states sets (see Section 5.2.5 [Per-file keywords], page 53) and mutually
exclusive tags (see Section 6.2 [Setting Tags], page 63) only for those set in these variables.

17.18.1 Setting up the staging area

The mobile application needs access to a file directory on a server6 to interact with Emacs.
Pass its location through the org-mobile-directory variable. If you can mount that
directory locally just set the variable to point to that directory:

(setq org-mobile-directory "~/orgmobile/")

Alternatively, by using TRAMP (see tramp), org-mobile-directory may point to a
remote directory accessible through, for example, SSH, SCP, or DAVS:

(setq org-mobile-directory "/davs:user@remote.host:/org/webdav/")

With a public server, consider encrypting the files. Org also requires OpenSSL installed
on the local computer. To turn on encryption, set the same password in the mobile ap-
plication and in Emacs. Set the password in the variable org-mobile-use-encryption7.

6 For a server to host files, consider using a WebDAV server, such as Nextcloud. Additional help is at this
FAQ entry.

7 If Emacs is configured for safe storing of passwords, then configure the variable org-mobile-encryption-
password; please read the docstring of that variable.

https://nextcloud.com
https://orgmode.org/worg/org-faq.html#mobileorg_webdav

Chapter 17: Miscellaneous 275

Note that even after the mobile application encrypts the file contents, the file name remains
visible on the file systems of the local computer, the server, and the mobile device.

17.18.2 Pushing to the mobile application

The command org-mobile-push copies files listed in org-mobile-files into the staging
area. Files include agenda files (as listed in org-agenda-files). Customize org-mobile-

files to add other files. File names are staged with paths relative to org-directory, so
all files should be inside this directory8.

Push creates a special Org file ‘agendas.org’ with custom agenda views defined by the
user9.

Finally, Org writes the file ‘index.org’, containing links to other files. The mobile
application reads this file first from the server to determine what other files to download
for agendas. For faster downloads, it is expected to only read files whose checksums10 have
changed.

17.18.3 Pulling from the mobile application

The command org-mobile-pull synchronizes changes with the server. More specifically, it
first pulls the Org files for viewing. It then appends captured entries and pointers to flagged
or changed entries to the file ‘mobileorg.org’ on the server. Org ultimately integrates its
data in an inbox file format, through the following steps:

1. Org moves all entries found in ‘mobileorg.org’11 and appends them to the file pointed
to by the variable org-mobile-inbox-for-pull. It should reside neither in the staging
area nor on the server. Each captured entry and each editing event is a top-level entry
in the inbox file.

2. After moving the entries, Org processes changes to the shared files. Some of them
are applied directly and without user interaction. Examples include changes to tags,
TODO state, headline and body text. Entries requiring further action are tagged as
‘FLAGGED’. Org marks entries with problems with an error message in the inbox. They
have to be resolved manually.

3. Org generates an agenda view for flagged entries for user intervention to clean up. For
notes stored in flagged entries, Org displays them in the echo area when point is on the
corresponding agenda item.

? Pressing ? displays the entire flagged note in another window. Org also
pushes it to the kill ring. To store flagged note as a normal note, use ? z C-y

C-c C-c. Pressing ? twice does these things: first it removes the ‘FLAGGED’
tag; second, it removes the flagged note from the property drawer; third,
it signals that manual editing of the flagged entry is now finished.

8 Symbolic links in org-directory need to have the same name as their targets.
9 While creating the agendas, Org mode forces ‘ID’ properties on all referenced entries, so that these

entries can be uniquely identified if Org Mobile flags them for further action. To avoid setting properties
configure the variable org-mobile-force-id-on-agenda-items to nil. Org mode then relies on outline
paths, assuming they are unique.

10 Checksums are stored automatically in the file ‘checksums.dat’.
11 The file will be empty after this operation.

Chapter 17: Miscellaneous 276

From the agenda dispatcher, ? returns to the view to finish processing flagged entries.
Note that these entries may not be the most recent since the mobile application searches
files that were last pulled. To get an updated agenda view with changes since the last pull,
pull again.

17.19 Drag and Drop & yank-media

Org mode supports drag and drop (DnD) of files. By default, Org asks the user what must
be done with the dropped file: attach it, insert ‘file:’ link, or open the file. Customize
org-yank-dnd-method to set the default DnD action.

When DnD method is “attach”, Org mode first consults DnD metadata to decide the
attach method. For example, when file/files are dragged from a file manager, Org may
attach by copying or by moving.

If Org cannot figure out which attachment method to use from the metadata, it defaults
to org-yank-dnd-default-attach-method12

Starting from Emacs 29, Org mode supports yank-media command to yank images from
the clipboard and files from a file manager.

When yanking images from clipboard, Org saves the image on disk and inserts the
image link to Org buffer. Images are either saved as attachments to heading (default) or
to a globally defined directory. The save location is controlled by org-yank-image-save-

method.

The yanked images are saved under automatically generated name. You can customize
org-yank-image-file-name-function to make Org query the image names or change the
naming scheme.

When yanking files copied from a file manager, Org respects the value of org-yank-dnd-
method. Image files pasted this way also respect the value of org-yank-image-save-method
when the action to perform is ‘attach’.

17.20 Repeating commands

When repeat-mode is turned on, headline motion commands, link and block navigation
commands by only pressing a single key. For example, instead of typing C-c C-n repeatedly,
you can just type C-c C-n n n n p u ... to move to different headlines. When a key not
in the map is pressed, it exits repeat-mode and the command corresponding to the key is
executed (see the Section “Repeating” in emacs for more details).

By default, the following commands are made repeatable in separate keymaps.

org-navigation-repeat-map:

Command Key binding Repeat key
org-next-visible-heading C-c C-n n

org-previous-visible-heading C-c C-p p

org-forward-heading-same-level C-c C-f f

org-backward-heading-same-level C-c C-b b

12 By default, org-yank-dnd-default-attach-method is set to nil – use the same value as org-attach-

method (cp by default).

Chapter 17: Miscellaneous 277

org-up-heading C-c C-u u

org-block-navigation-repeat-map:

Command Key binding Repeat key
org-next-block C-c M-f f

org-previous-block C-c M-b b

org-link-navigation-repeat-map:

Command Key binding Repeat key
org-next-link C-c C-x C-n n

org-previous-link C-c C-x C-p p

Appendix A: Hacking 278

Appendix A Hacking

This appendix describes some ways a user can extend the functionality of Org.

A.1 Hooks

Org has numerous hook variables for adding functionality. A complete list of hooks with
documentation is maintained by the Worg project at https://orgmode.org/worg/doc.

html#hooks.

A.2 Add-on Packages

Various authors wrote many add-on packages for Org. Some of these packages used to be
part of the ‘org-mode’ repository but are now hosted in a separate ‘org-contrib’ repos-
itory here. A Worg page with more information is at: https://orgmode.org/worg/

org-contrib/.

A.3 Adding Hyperlink Types

Org has many built-in hyperlink types (see Chapter 4 [Hyperlinks], page 39), and an in-
terface for adding new link types. The following example shows the process of adding Org
links to Unix man pages, which look like this

[[man:printf][The printf manual]]

The following ‘ol-man.el’ file implements it

;;; ol-man.el - Support for links to man pages in Org mode

(require 'ol)

(org-link-set-parameters "man"

:follow #'org-man-open

:export #'org-man-export

:store #'org-man-store-link)

(defcustom org-man-command 'man

"The Emacs command to be used to display a man page."

:group 'org-link

:type '(choice (const man) (const woman)))

(defun org-man-open (path _)

"Visit the manpage on PATH.

PATH should be a topic that can be thrown at the man command."

(funcall org-man-command path))

(defun org-man-store-link (&optional _interactive?)

"Store a link to a man page."

(when (memq major-mode '(Man-mode woman-mode))

;; This is a man page, we do make this link.

(let* ((page (org-man-get-page-name))

https://orgmode.org/worg/doc.html#hooks
https://orgmode.org/worg/doc.html#hooks
https://git.sr.ht/~bzg/org-contrib
https://orgmode.org/worg/org-contrib/
https://orgmode.org/worg/org-contrib/

Appendix A: Hacking 279

(link (concat "man:" page))

(description (format "Man page for %s" page)))

(org-link-store-props

:type "man"

:link link

:description description))))

(defun org-man-get-page-name ()

"Extract the page name from the buffer name."

;; This works for both `Man-mode' and `woman-mode'.

(if (string-match " \\(\\S-+\\)*" (buffer-name))

(match-string 1 (buffer-name))

(error "Cannot create link to this man page")))

(defun org-man-export (link description format _)

"Export a man page link from Org files."

(let ((path (format "http://man.he.net/?topic=%s§ion=all" link))

(desc (or description link)))

(pcase format

(`html (format "%s" path desc))

(`latex (format "\\href{%s}{%s}" path desc))

(`texinfo (format "@uref{%s,%s}" path desc))

(`ascii (format "%s (%s)" desc path))

(t path))))

(provide ol-man)

;;; ol-man.el ends here

To activate links to man pages in Org, enter this in the Emacs init file:

(require 'ol-man)

A review of ‘ol-man.el’:

1. First, ‘(require 'ol)’ ensures that ‘ol.el’ is loaded.

2. Then org-link-set-parameters defines a new link type with ‘man’ prefix and as-
sociates functions for following, exporting and storing such links. See the variable
org-link-parameters for a complete list of possible associations.

3. The rest of the file implements necessary variables and functions.

For example, org-man-store-link is responsible for storing a link when org-store-

link (see Section 4.5 [Handling Links], page 43) is called from a buffer displaying a
man page. It is passed an argument interactive? which this function does not use,
but other store functions used to behave differently when a link is stored interactively
by the user. It first checks if the major mode is appropriate. If check fails, the function
returns nil, which means it isn’t responsible for creating a link to the current buffer.
Otherwise, the function makes a link string by combining the ‘man:’ prefix with the
man topic. It also provides a default description. The function org-insert-link can
insert it back into an Org buffer later on.

Appendix A: Hacking 280

A.4 Adding Hyperlink preview

By default, Org supports previewing external links for links ot type ‘file’ and ‘attachment’
that point to image files. (See Section 12.7.1 [Images], page 149.)

Support for previewing other link types inline can be added to Org in the following way:

1. Add a ‘:preview’ link parameter to the link type using org-link-set-parameters.
As an example, here we add previews for the ‘docview’ link type.

(org-link-set-parameters

"docview" :preview #'org-link-docview-preview)

2. The value of the ‘:preview’ parameter must be a function that accepts three arguments:

• an overlay placed from the start to the end of the link,

• the link path, as a string, and

• the syntax node for the link.

It must return a non-nil value to indicate preview success. A value of ‘nil’ implies that
the preview failed, and the overlay placed on the link will be removed.

In our example, we use the ‘convert’ program (part of the ‘imagemagick’ suite of
tools) to create the thumbnail that is displayed inline.

(defun org-link-docview-preview (ov path _elem)

"Preview file at PATH in overlay OV.

_ELEM is the syntax node of the link element."

(when (executable-find "convert")

(let* ((path (expand-file-name (substitute-in-file-name path)))

(output-file (expand-file-name (concat "org-docview-preview-"

(substring (sha1 path) 0 10)

".png")

temporary-file-directory)))

;; Create or find preview for path

(when (or (file-readable-p output-file)

(= 0 (call-process

"convert"

nil (get-buffer-create "*Org Docview Preview Output*") nil

"-thumbnail" "x320" "-colorspace" "rgb"

"-background" "white" "-alpha" "remove" "-strip"

(concat path "[0]") output-file)))

;; If preview image is available, display it via the overlay

(overlay-put ov 'display (create-image output-file))))))

3. Now previews of docview links for supported document types (PDF, djvu) are generated
(along with image file previews) when calling org-link-preview.

A.5 Adding Export Backends

Org’s export engine makes it easy for writing new backends. The framework on which the
engine was built makes it easy to derive new backends from existing ones.

The two main entry points to the export engine are: org-export-define-backend and
org-export-define-derived-backend. To grok these functions, see ‘ox-latex.el’ for an

Appendix A: Hacking 281

example of defining a new backend from scratch, and ‘ox-beamer.el’ for an example of
deriving from an existing engine.

For creating a new backend from scratch, first set its name as a symbol in an alist
consisting of elements and export functions. To make the backend visible to the export
dispatcher, set :menu-entry keyword. For export options specific to this backend, set the
:options-alist.

For creating a new backend from an existing one, set :translate-alist to an alist of
export functions. This alist replaces the parent backend functions.

For complete documentation, see the Org Export Reference on Worg.

A.6 Tables in Arbitrary Syntax

Due to Org’s success in handling tables with Orgtbl, a frequently requested feature is the
use of Org’s table functions in other modes, e.g., LATEX. This would be hard to do in a
general way without complicated customization nightmares. Moreover, that would take
Org away from its simplicity roots that Orgtbl has proven. There is, however, an alternate
approach to accomplishing the same.

This approach involves implementing a custom translate function that operates on a
native Org source table to produce a table in another format. This strategy would keep the
excellently working Orgtbl simple and isolate complications, if any, confined to the translate
function. To add more alien table formats, we just add more translate functions. Also the
burden of developing custom translate functions for new table formats is in the hands of
those who know those formats best.

A.6.1 Radio tables

Radio tables are target locations for translated tables that are not near their source. Org
finds the target location and inserts the translated table.

The key to finding the target location is the magic words ‘BEGIN/END RECEIVE ORGTBL’.
They have to appear as comments in the current mode. If the mode is C, then:

/* BEGIN RECEIVE ORGTBL table_name */

/* END RECEIVE ORGTBL table_name */

At the location of source, Org needs a special line to direct Orgtbl to translate and to
find the target for inserting the translated table. For example:

#+ORGTBL: SEND table_name translation_function arguments ...

‘table_name’ is the table’s reference name, which is also used in the receiver lines, and the
‘translation_function’ is the Lisp function that translates. This line, in addition, may
also contain alternating key and value arguments at the end. The translation function gets
these values as a property list. A few standard parameters are already recognized and acted
upon before the translation function is called:

‘:skip N’ Skip the first N lines of the table. Hlines do count; include them if they are to
be skipped.

‘:skipcols (n1 n2 ...)’
List of columns to be skipped. First Org automatically discards columns with
calculation marks and then sends the table to the translator function, which
then skips columns as specified in ‘skipcols’.

https://orgmode.org/worg/dev/org-export-reference.html

Appendix A: Hacking 282

To keep the source table intact in the buffer without being disturbed when the source
file is compiled or otherwise being worked on, use one of these strategies:

• Place the table in a block comment. For example, in C mode you could wrap the table
between ‘/*’ and ‘*/’ lines.

• Put the table after an “end” statement. For example \bye in TEX and \end{document}

in LATEX.

• Comment and uncomment each line of the table during edits. The M-x orgtbl-toggle-

comment command makes toggling easy.

A.6.2 A LATEX example of radio tables

To wrap a source table in LATEX, use the ‘comment’ environment provided by ‘comment.sty’1.
To activate it, put \usepackage{comment} in the document header. Orgtbl mode inserts a
radio table skeleton2 with the command M-x orgtbl-insert-radio-table, which prompts
for a table name. For example, if ‘salesfigures’ is the name, the template inserts:

% BEGIN RECEIVE ORGTBL salesfigures

% END RECEIVE ORGTBL salesfigures

\begin{comment}

#+ORGTBL: SEND salesfigures orgtbl-to-latex

| | |

\end{comment}

The line ‘#+ORGTBL: SEND’ tells Orgtbl mode to use the function orgtbl-to-latex to con-
vert the table to LATEX format, then insert the table at the target (receive) location named
‘salesfigures’. Now the table is ready for data entry. It can even use spreadsheet fea-
tures3:

% BEGIN RECEIVE ORGTBL salesfigures

% END RECEIVE ORGTBL salesfigures

\begin{comment}

#+ORGTBL: SEND salesfigures orgtbl-to-latex

| Month | Days | Nr sold | per day |

|-------+------+---------+---------|

| Jan | 23 | 55 | 2.4 |

| Feb | 21 | 16 | 0.8 |

| March | 22 | 278 | 12.6 |

#+TBLFM: $4=$3/$2;%.1f

% $ (optional extra dollar to keep Font Lock happy, see footnote)

\end{comment}

After editing, C-c C-c inserts the translated table at the target location, between the
two marker lines.

1 https://www.ctan.org/pkg/comment
2 By default this works only for LATEX, HTML, and Texinfo. Configure the variable orgtbl-radio-table-
templates to install templates for other modes.

3 If the ‘TBLFM’ keyword contains an odd number of dollar characters, this may cause problems with
Font Lock in LATEX mode. As shown in the example you can fix this by adding an extra line inside
the ‘comment’ environment that is used to balance the dollar expressions. If you are using AUCTEX
with the font-latex library, a much better solution is to add the ‘comment’ environment to the variable
LaTeX-verbatim-environments.

https://www.ctan.org/pkg/comment

Appendix A: Hacking 283

For hand-made custom tables, note that the translator needs to skip the first two lines of
the source table. Also, the command has to splice out the target table without the header
and footer.

\begin{tabular}{lrrr}

Month & \multicolumn{1}{c}{Days} & Nr.\ sold & per day\\

% BEGIN RECEIVE ORGTBL salesfigures

% END RECEIVE ORGTBL salesfigures

\end{tabular}

%

\begin{comment}

#+ORGTBL: SEND salesfigures orgtbl-to-latex :splice t :skip 2

| Month | Days | Nr sold | per day |

|-------+------+---------+---------|

| Jan | 23 | 55 | 2.4 |

| Feb | 21 | 16 | 0.8 |

| March | 22 | 278 | 12.6 |

#+TBLFM: $4=$3/$2;%.1f

\end{comment}

The LATEX translator function orgtbl-to-latex is already part of Orgtbl mode and uses
a ‘tabular’ environment to typeset the table and marks horizontal lines with \hline. For
additional parameters to control output, see Section A.6.3 [Translator functions], page 283:

‘:splice BOOLEAN’
When {{{var(BOOLEAN}}} is non-nil, return only table body lines; i.e., not
wrapped in ‘tabular’ environment. Default is nil.

‘:fmt FMT’ Format string to warp each field. It should contain ‘%s’ for the original field
value. For example, to wrap each field value in dollar symbol, you could use
‘:fmt "$%s$"’. Format can also wrap a property list with column numbers and
formats, for example ‘:fmt (2 "$%s$" 4 "%s\\%%")’. In place of a string, a
function of one argument can be used; the function must return a formatted
string.

‘:efmt EFMT’
Format numbers as exponentials. The spec should have ‘%s’ twice for insert-
ing mantissa and exponent, for example ‘"%s\\times10^{%s}"’. This may
also be a property list with column numbers and formats, for example ‘:efmt
(2 "$%s\\times10^{%s}$" 4 "$%s\\cdot10^{%s}$")’. After EFMT has been
applied to a value, FMT—see above—is also applied. Functions with two ar-
guments can be supplied instead of strings. By default, no special formatting
is applied.

A.6.3 Translator functions

Orgtbl mode has built-in translator functions: orgtbl-to-csv (comma-separated values),
orgtbl-to-tsv (TAB-separated values), orgtbl-to-latex, orgtbl-to-html, orgtbl-to-
texinfo, orgtbl-to-unicode and orgtbl-to-orgtbl. They use the generic translator,
orgtbl-to-generic, which delegates translations to various export backends.

Appendix A: Hacking 284

Properties passed to the function through the ‘ORGTBL SEND’ line take precedence over
properties defined inside the function. For example, this overrides the default LATEX line
endings, \\, with \\[2mm]:

#+ORGTBL: SEND test orgtbl-to-latex :lend " \\\\[2mm]"

For a new language translator, define a converter function. It can be a generic function,
such as shown in this example. It marks a beginning and ending of a table with ‘!BTBL!’
and ‘!ETBL!’; a beginning and ending of lines with ‘!BL!’ and ‘!EL!’; and uses a TAB for
a field separator:

(defun orgtbl-to-language (table params)

"Convert the orgtbl-mode TABLE to language."

(orgtbl-to-generic

table

(org-combine-plists

'(:tstart "!BTBL!" :tend "!ETBL!" :lstart "!BL!" :lend "!EL!" :sep "\t")

params)))

The documentation for the orgtbl-to-generic function shows a complete list of parame-
ters, each of which can be passed through to orgtbl-to-latex, orgtbl-to-texinfo, and
any other function using that generic function.

For complicated translations the generic translator function could be replaced by a cus-
tom translator function. Such a custom function must take two arguments and return a
single string containing the formatted table. The first argument is the table whose lines are
a list of fields or the symbol hline. The second argument is the property list consisting of
parameters specified in the ‘#+ORGTBL: SEND’ line. Please share your translator functions
by posting them to the Org users mailing list, at mailto:emacs-orgmode@gnu.org.

A.7 Dynamic Blocks

Org supports dynamic blocks in Org documents. They are inserted with begin and end
markers like any other code block, but the contents are updated automatically by a user
function.

You can insert a dynamic block with org-dynamic-block-insert-dblock, which is
bound to C-c C-x x by default. For example, C-c C-x x c l o c k t a b l e RET inserts a
table that updates the work time (see Section 8.4 [Clocking Work Time], page 86).

Dynamic blocks can have names and function parameters. The syntax is similar to
source code block specifications:

#+BEGIN: myblock :parameter1 value1 :parameter2 value2 ...

...

#+END:

These commands update dynamic blocks:

C-c C-x C-u (org-dblock-update)
Update dynamic block at point.

C-u C-c C-x C-u

Update all dynamic blocks in the current file.

mailto:mailto:emacs-orgmode@gnu.org

Appendix A: Hacking 285

Before updating a dynamic block, Org removes content between the ‘BEGIN’ and ‘END’
markers. Org then reads the parameters on the ‘BEGIN’ line for passing to the writer function
as a plist. The previous content of the dynamic block becomes erased from the buffer and
appended to the plist under :content.

The syntax for naming a writer function with a dynamic block labeled ‘myblock’ is:
org-dblock-write:myblock.

The following is an example of a dynamic block and a block writer function that updates
the time when the function was last run:

#+BEGIN: block-update-time :format "on %m/%d/%Y at %H:%M"

...

#+END:

The dynamic block’s writer function:

(defun org-dblock-write:block-update-time (params)

(let ((fmt (or (plist-get params :format) "%d. %m. %Y")))

(insert "Last block update at: "

(format-time-string fmt))))

To keep dynamic blocks up-to-date in an Org file, use the function, org-update-all-
dblocks in hook, such as before-save-hook. The org-update-all-dblocks function does
not run if the file is not in Org mode.

Dynamic blocks, like any other block, can be narrowed with org-narrow-to-block.

A.8 Special Agenda Views

Org provides a special hook to further limit items in agenda views: agenda, agenda*4, todo,
alltodo, tags, tags-todo, tags-tree. Specify a custom function that tests inclusion of
every matched item in the view. This function can also skip as much as is needed.

For a global condition applicable to agenda views, use the org-agenda-skip-function-
global variable. Org uses a global condition with org-agenda-skip-function for custom
searching.

This example defines a function for a custom view showing TODO items with ‘waiting’
status. Manually this is a multistep search process, but with a custom view, this can be
automated as follows:

The custom function searches the subtree for the ‘waiting’ tag and returns nil on
match. Otherwise, it gives the location from where the search continues.

(defun my-skip-unless-waiting ()

"Skip trees that are not waiting"

(let ((subtree-end (save-excursion (org-end-of-subtree t))))

(if (re-search-forward ":waiting:" subtree-end t)

nil ; tag found, do not skip

subtree-end))) ; tag not found, continue after end of subtree

To use this custom function in a custom agenda command:

4 The agenda* view is the same as agenda except that it only considers appointments, i.e., scheduled and
deadline items that have a time specification ‘[h]h:mm’ in their timestamps.

Appendix A: Hacking 286

(org-add-agenda-custom-command

'("b" todo "PROJECT"

((org-agenda-skip-function 'my-skip-unless-waiting)

(org-agenda-overriding-header "Projects waiting for something: "))))

Note that this also binds org-agenda-overriding-header to a more meaningful string
suitable for the agenda view.

Search for entries with a limit set on levels for the custom search. This is a general
approach to creating custom searches in Org. To include all levels, use ‘LEVEL>0’5. Then to
selectively pick the matched entries, use org-agenda-skip-function, which also accepts
Lisp forms, such as org-agenda-skip-entry-if and org-agenda-skip-subtree-if. For
example:

‘(org-agenda-skip-entry-if 'scheduled)’
Skip current entry if it has been scheduled.

‘(org-agenda-skip-entry-if 'notscheduled)’
Skip current entry if it has not been scheduled.

‘(org-agenda-skip-entry-if 'deadline)’
Skip current entry if it has a deadline.

‘(org-agenda-skip-entry-if 'scheduled 'deadline)’
Skip current entry if it has a deadline, or if it is scheduled.

‘(org-agenda-skip-entry-if 'todo '("TODO" "WAITING"))’
Skip current entry if the TODO keyword is TODO or WAITING.

‘(org-agenda-skip-entry-if 'todo 'done)’
Skip current entry if the TODO keyword marks a DONE state.

‘(org-agenda-skip-entry-if 'timestamp)’
Skip current entry if it has any timestamp, may also be deadline or scheduled.

‘(org-agenda-skip-entry-if 'regexp "regular expression")’
Skip current entry if the regular expression matches in the entry.

‘(org-agenda-skip-entry-if 'notregexp "regular expression")’
Skip current entry unless the regular expression matches.

‘(org-agenda-skip-subtree-if 'regexp "regular expression")’
Same as above, but check and skip the entire subtree.

The following is an example of a search for ‘waiting’ without the special function:

(org-add-agenda-custom-command

'("b" todo "PROJECT"

((org-agenda-skip-function '(org-agenda-skip-subtree-if

'regexp ":waiting:"))

(org-agenda-overriding-header "Projects waiting for something: "))))

5 Note that, for org-odd-levels-only, a level number corresponds to order in the hierarchy, not to the
number of stars.

Appendix A: Hacking 287

A.9 Speeding Up Your Agendas

Some agenda commands slow down when the Org files grow in size or number. Here are
tips to speed up:

• Reduce the number of Org agenda files to avoid slowdowns due to hard drive accesses.

• Reduce the number of DONE and archived headlines so agenda operations that skip
over these can finish faster.

• Do not dim blocked tasks:

(setq org-agenda-dim-blocked-tasks nil)

• Stop preparing agenda buffers on startup:

(setq org-agenda-inhibit-startup t)

• Disable tag inheritance for agendas:

(setq org-agenda-use-tag-inheritance nil)

• Disable parsing of some properties:

(setq org-agenda-ignore-properties '(stats))

This will disable parsing and updating statistic cookies.

These options can be applied to selected agenda views. For more details about generation
of agenda views, see the docstrings for the relevant variables, and this dedicated Worg page
for agenda optimization.

A.10 Extracting Agenda Information

Org provides commands to access agendas through Emacs batch mode. Through this
command-line interface, agendas are automated for further processing or printing.

org-batch-agenda creates an agenda view in ASCII and outputs to standard output.
This command takes one string parameter. When string consists of a single character,
Org uses it as a key to org-agenda-custom-commands. These are the same ones available
through the agenda dispatcher (see Section 11.2 [Agenda Dispatcher], page 113).

This example command line directly prints the TODO list to the printer:

emacs -batch -l ~/.emacs -eval '(org-batch-agenda "t")' | lpr

When the string parameter length is two or more characters, Org matches it with
tags/TODO strings. For example, this example command line prints items tagged with
‘shop’, but excludes items tagged with ‘NewYork’:

emacs -batch -l ~/.emacs \

-eval '(org-batch-agenda "+shop-NewYork")' | lpr

An example showing on-the-fly parameter modifications:

emacs -batch -l ~/.emacs \

-eval '(org-batch-agenda "a" \

org-agenda-span (quote month) \

org-agenda-include-diary nil \

org-agenda-files (quote ("~/org/project.org")))' \

| lpr

which produces an agenda for the next 30 days from just the ‘~/org/projects.org’ file.

https://orgmode.org/worg/agenda-optimization.html

Appendix A: Hacking 288

For structured processing of agenda output, use org-batch-agenda-csv with the fol-
lowing fields:

category The category of the item

head The headline, without TODO keyword, TAGS and PRIORITY

type The type of the agenda entry, can be

todo selected in TODO match
tagsmatch selected in tags match
diary imported from diary
deadline a deadline
scheduled scheduled
timestamp appointment, selected by timestamp
closed entry was closed on date
upcoming-deadline warning about nearing deadline
past-scheduled forwarded scheduled item
block entry has date block including date

todo The TODO keyword, if any

tags All tags including inherited ones, separated by colons

date The relevant date, like ‘2007-2-14’

time The time, like ‘15:00-16:50’

extra String with extra planning info

priority-l The priority letter if any was given

priority-n The computed numerical priority

If the selection of the agenda item was based on a timestamp, including those items with
‘DEADLINE’ and ‘SCHEDULED’ keywords, then Org includes date and time in the output.

If the selection of the agenda item was based on a timestamp (or deadline/scheduled),
then Org includes date and time in the output.

Here is an example of a post-processing script in Perl. It takes the CSV output from
Emacs and prints with a checkbox:

#!/usr/bin/perl

define the Emacs command to run

$cmd = "emacs -batch -l ~/.emacs -eval '(org-batch-agenda-csv \"t\")'";

run it and capture the output

$agenda = qx{$cmd 2>/dev/null};

loop over all lines

foreach $line (split(/\n/,$agenda)) {

get the individual values

($category,$head,$type,$todo,$tags,$date,$time,$extra,

$priority_l,$priority_n) = split(/,/,$line);

Appendix A: Hacking 289

process and print

print "[] $head\n";

}

A.11 Using the Property API

Here is a description of the functions that can be used to work with properties.

[Function]org-entry-properties &optional pom which
Get all properties of the entry at point-or-marker POM. This includes the TODO
keyword, the tags, time strings for deadline, scheduled, and clocking, and any addi-
tional properties defined in the entry. The return value is an alist. Keys may occur
multiple times if the property key was used several times. POM may also be nil, in
which case the current entry is used. If WHICH is nil or all, get all properties. If
WHICH is special or standard, only get that subclass.

[Function]org-entry-get pom property &optional inherit
Get value of PROPERTY for entry at point-or-marker POM. By default, this only
looks at properties defined locally in the entry. If INHERIT is non-nil and the
entry does not have the property, then also check higher levels of the hierarchy. If
INHERIT is the symbol selective, use inheritance if and only if the setting of
org-use-property-inheritance selects PROPERTY for inheritance.

[Function]org-entry-delete pom property
Delete the property PROPERTY from entry at point-or-marker POM.

[Function]org-entry-put pom property value
Set PROPERTY to VALUES for entry at point-or-marker POM.

[Function]org-buffer-property-keys &optional include-specials
Get all property keys in the current buffer.

[Function]org-insert-property-drawer
Insert a property drawer for the current entry.

[Function]org-entry-put-multivalued-property pom property &rest values
Set PROPERTY at point-or-marker POM to VALUES. VALUES should be a list of
strings. They are concatenated, with spaces as separators.

[Function]org-entry-get-multivalued-property pom property
Treat the value of the property PROPERTY as a whitespace-separated list of values
and return the values as a list of strings.

[Function]org-entry-add-to-multivalued-property pom property value
Treat the value of the property PROPERTY as a whitespace-separated list of values
and make sure that VALUE is in this list.

[Function]org-entry-remove-from-multivalued-property pom property value
Treat the value of the property PROPERTY as a whitespace-separated list of values
and make sure that VALUE is not in this list.

Appendix A: Hacking 290

[Function]org-entry-member-in-multivalued-property pom property value
Treat the value of the property PROPERTY as a whitespace-separated list of values
and check if VALUE is in this list.

[User Option]org-property-allowed-value-functions
Hook for functions supplying allowed values for a specific property. The functions
must take a single argument, the name of the property, and return a flat list of
allowed values. If ‘:ETC’ is one of the values, use the values as completion help, but
allow also other values to be entered. The functions must return nil if they are not
responsible for this property.

A.12 Using the Mapping API

Org has sophisticated mapping capabilities to find all entries satisfying certain criteria.
Internally, this functionality is used to produce agenda views, but there is also an API that
can be used to execute arbitrary functions for each or selected entries. The main entry
point for this API is:

[Function]org-map-entries func &optional match scope &rest skip
Call FUNC at each headline selected by MATCH in SCOPE.

FUNC is a function or a Lisp form. With point positioned at the beginning of the
headline, call the function without arguments. Org returns a list of return values of
calls to the function.

To avoid preserving point, Org wraps the call to FUNC in save-excursion form.
After evaluation, Org moves point to the end of the line that was just processed.
Search continues from that point forward. This may not always work as expected
under some conditions, such as if the current subtree was removed by a previous
archiving operation. In such rare circumstances, Org skips the next entry entirely
when it should not. To stop Org from such skips, make FUNC set the variable
org-map-continue-from to a specific buffer position.

MATCH is a tags/property/TODO match. Org iterates only matched headlines. Org
iterates over all headlines when MATCH is nil or t.

SCOPE determines the scope of this command. It can be any of:

nil The current buffer, respecting the restriction, if any.

tree The subtree started with the entry at point.

region The entries within the active region, if any.

file The current buffer, without restriction.

file-with-archives

The current buffer, and any archives associated with it.

agenda All agenda files.

agenda-with-archives

All agenda files with any archive files associated with them.

list of filenames
If this is a list, all files in the list are scanned.

Appendix A: Hacking 291

The remaining arguments are treated as settings for the scanner’s skipping facilities.
Valid arguments are:

archive Skip trees with the ‘ARCHIVE’ tag.

comment Skip trees with the COMMENT keyword.

function or Lisp form
Used as value for org-agenda-skip-function, so whenever the function
returns t, FUNC is called for that entry and search continues from the
point where the function leaves it.

The mapping routine can call any arbitrary function, even functions that change meta-
data or query the property API (see Section A.11 [Using the Property API], page 289).
Here are some handy functions:

[Function]org-todo &optional arg
Change the TODO state of the entry. See the docstring of the functions for the many
possible values for the argument ARG.

[Function]org-priority &optional action
Change the priority of the entry. See the docstring of this function for the possible
values for ACTION.

[Function]org-toggle-tag tag &optional onoff
Toggle the tag TAG in the current entry. Setting ONOFF to either on or off does
not toggle tag, but ensure that it is either on or off.

[Function]org-promote
Promote the current entry.

[Function]org-demote
Demote the current entry.

This example turns all entries tagged with ‘TOMORROW’ into TODO entries with keyword
‘UPCOMING’. Org ignores entries in comment trees and archive trees.

(org-map-entries '(org-todo "UPCOMING")

"+TOMORROW" 'file 'archive 'comment)

The following example counts the number of entries with TODO keyword ‘WAITING’, in
all agenda files.

(length (org-map-entries t "/+WAITING" 'agenda))

Appendix B: History and Acknowledgments 292

Appendix B History and Acknowledgments

B.1 From Carsten

Org was born in 2003, out of frustration over the user interface of the Emacs Outline
mode. I was trying to organize my notes and projects, and using Emacs seemed to be
the natural way to go. However, having to remember eleven different commands with two
or three keys per command, only to hide and show parts of the outline tree, that seemed
entirely unacceptable to me. Also, when using outlines to take notes, I constantly wanted
to restructure the tree, organizing it parallel to my thoughts and plans. Visibility cycling
and structure editing were originally implemented in the package ‘outline-magic.el’, but
quickly moved to the more general ‘org.el’. As this environment became comfortable for
project planning, the next step was adding TODO entries, basic timestamps, and table
support. These areas highlighted the two main goals that Org still has today: to be a
new, outline-based, plain text mode with innovative and intuitive editing features, and to
incorporate project planning functionality directly into a notes file.

Since the first release, literally thousands of emails to me or to the mailing list have
provided a constant stream of bug reports, feedback, new ideas, and sometimes patches
and add-on code. Many thanks to everyone who has helped to improve this package. I am
trying to keep here a list of the people who had significant influence in shaping one or more
aspects of Org. The list may not be complete, if I have forgotten someone, please accept
my apologies and let me know.

Before I get to this list, a few special mentions are in order:

Bastien Guerry
Bastien has written numerous extensions to Org (most of them integrated into
the core by now), including the LATEX exporter and the plain list parser. His
support during the early days was central to the success of this project. Bastien
also invented Worg, helped to establish the Web presence of Org, and sponsored
hosting costs for the orgmode.org website. Bastien stepped in as maintainer of
Org between 2011 and 2013, at a time when I desperately needed a break.

Eric Schulte and Dan Davison
Eric and Dan are jointly responsible for the Org Babel system, which turns
Org into a multi-language environment for evaluating code and doing literate
programming and reproducible research. This has become one of Org’s killer
features that define what Org is today.

John Wiegley
John has contributed a number of great ideas and patches directly to Org,
including the attachment system (‘org-attach.el’), integration with Apple
Mail (‘org-mac-message.el’), hierarchical dependencies of TODO items, habit
tracking (‘org-habits.el’), and encryption (‘org-crypt.el’). Also, the cap-
ture system is really an extended copy of his great ‘remember.el’.

Sebastian Rose
Without Sebastian, the HTML/XHTML publishing of Org would be the pitiful
work of an ignorant amateur. Sebastian has pushed this part of Org onto a

mailto:mailto:emacs-orgmode@gnu.org

Appendix B: History and Acknowledgments 293

much higher level. He also wrote ‘org-info.js’, a JavaScript program for
displaying webpages derived from Org using an Info-like or a folding interface
with single-key navigation.

See below for the full list of contributions! Again, please let me know what I am missing
here!

B.2 From Bastien

I (Bastien) have been maintaining Org between 2011 and 2013. This appendix would not
be complete without adding a few more acknowledgments and thanks.

I am first grateful to Carsten for his trust while handing me over the maintainership of
Org. His unremitting support is what really helped me getting more confident over time,
with both the community and the code.

When I took over maintainership, I knew I would have to make Org more collaborative
than ever, as I would have to rely on people that are more knowledgeable than I am on
many parts of the code. Here is a list of the persons I could rely on, they should really be
considered co-maintainers, either of the code or the community:

Eric Schulte
Eric is maintaining the Babel parts of Org. His reactivity here kept me away
from worrying about possible bugs here and let me focus on other parts.

Nicolas Goaziou
Nicolas is maintaining the consistency of the deepest parts of Org. His work on
‘org-element.el’ and ‘ox.el’ has been outstanding, and it opened the doors
for many new ideas and features. He rewrote many of the old exporters to use
the new export engine, and helped with documenting this major change. More
importantly (if that’s possible), he has been more than reliable during all the
work done for Org 8.0, and always very reactive on the mailing list.

Achim Gratz
Achim rewrote the building process of Org, turning some ad hoc tools into
a flexible and conceptually clean process. He patiently coped with the many
hiccups that such a change can create for users.

Nick Dokos
The Org mode mailing list would not be such a nice place without Nick, who
patiently helped users so many times. It is impossible to overestimate such a
great help, and the list would not be so active without him.

I received support from so many users that it is clearly impossible to be fair when
shortlisting a few of them, but Org’s history would not be complete if the ones above were
not mentioned in this manual.

B.3 List of Contributions

• Russell Adams came up with the idea for drawers.

• Thomas Baumann wrote ‘ol-bbdb.el’ and ‘ol-mhe.el’.

• Christophe Bataillon created the great unicorn logo that we use on the Org mode
website.

Appendix B: History and Acknowledgments 294

• Alex Bochannek provided a patch for rounding timestamps.

• Jan Böcker wrote ‘ol-docview.el’.

• Brad Bozarth showed how to pull RSS feed data into Org files.

• Tom Breton wrote ‘org-choose.el’.

• Charles Cave’s suggestion sparked the implementation of templates for Remember,
which are now templates for capture.

• Timothy E Chapman worked on a complete overhaul of the orgmode.org website in
2020 and helped fixing various bugs.

• Pavel Chalmoviansky influenced the agenda treatment of items with specified time.

• Gregory Chernov patched support for Lisp forms into table calculations and improved
XEmacs compatibility, in particular by porting ‘nouline.el’ to XEmacs.

• Sacha Chua suggested copying some linking code from Planner.

• Baoqiu Cui contributed the DocBook exporter.

• Eddward DeVilla proposed and tested checkbox statistics. He also came up with the
idea of properties, and that there should be an API for them.

• Nick Dokos tracked down several nasty bugs.

• Kees Dullemond used to edit projects lists directly in HTML and so inspired some of
the early development, including HTML export. He also asked for a way to narrow
wide table columns.

• Thomas S. Dye contributed documentation on Worg and helped to integrate the Org
Babel documentation into the manual.

• Christian Egli converted the documentation into Texinfo format, inspired the agenda,
patched CSS formatting into the HTML exporter, and wrote ‘org-taskjuggler.el’.

• David Emery provided a patch for custom CSS support in exported HTML agendas.

• Nic Ferrier contributed mailcap and XOXO support.

• Miguel A. Figueroa-Villanueva implemented hierarchical checkboxes.

• John Foerch figured out how to make incremental search show context around a match
in a hidden outline tree.

• Raimar Finken wrote ‘org-git-line.el’.

• Mikael Fornius works as a mailing list moderator.

• Austin Frank works as a mailing list moderator.

• Eric Fraga drove the development of Beamer export with ideas and testing.

• Barry Gidden did proofreading the manual in preparation for the book publication
through Network Theory Ltd.

• Niels Giesen had the idea to automatically archive DONE trees.

• Nicolas Goaziou rewrote much of the plain list code.

• Kai Grossjohann pointed out key-binding conflicts with other packages.

• Brian Gough of Network Theory Ltd publishes the Org mode manual as a book.

• Bernt Hansen has driven much of the support for auto-repeating tasks, task state
change logging, and the clocktable. His clear explanations have been critical when we
started to adopt the Git version control system.

Appendix B: History and Acknowledgments 295

• Manuel Hermenegildo has contributed various ideas, small fixes and patches.

• Phil Jackson wrote ‘ol-irc.el’.

• Scott Jaderholm proposed footnotes, control over whitespace between folded entries,
and column view for properties.

• Matt Jones wrote MobileOrg Android.

• Tokuya Kameshima wrote ‘org-wl.el’ and ‘org-mew.el’.

• Shidai Liu (“Leo”) asked for embedded LATEX and tested it. He also provided frequent
feedback and some patches.

• Matt Lundin has proposed last-row references for table formulas and named invisible
anchors. He has also worked a lot on the FAQ.

• David Maus wrote ‘org-atom.el’, maintains the issues file for Org, and is a prolific
contributor on the mailing list with competent replies, small fixes and patches.

• Jason F. McBrayer suggested agenda export to CSV format.

• Kyle Meyer helped to set up the public-inbox archive of the Org mailing list and has
been fixing many bugs.

• Max Mikhanosha came up with the idea of refiling.

• Dmitri Minaev sent a patch to set priority limits on a per-file basis.

• Stefan Monnier provided a patch to keep the Emacs Lisp compiler happy.

• Richard Moreland wrote MobileOrg for the iPhone.

• Rick Moynihan proposed allowing multiple TODO sequences in a file and being able
to quickly restrict the agenda to a subtree.

• Todd Neal provided patches for links to Info files and Elisp forms.

• Greg Newman refreshed the unicorn logo into its current form.

• Tim O’Callaghan suggested in-file links, search options for general file links, and tags.

• Osamu Okano wrote ‘orgcard2ref.pl’, a Perl program to create a text version of the
reference card.

• Takeshi Okano translated the manual and David O’Toole’s tutorial into Japanese.

• Oliver Oppitz suggested multi-state TODO items.

• Scott Otterson sparked the introduction of descriptive text for links, among other
things.

• Pete Phillips helped during the development of the TAGS feature, and provided fre-
quent feedback.

• Martin Pohlack provided the code snippet to bundle character insertion into bundles
of 20 for undo.

• Ihor Radchenko helped with fixing bugs and improving the user experience regarding
Org’s speed.

• T. V. Raman reported bugs and suggested improvements.

• Matthias Rempe (Oelde) provided ideas, Windows support, and quality control.

• Paul Rivier provided the basic implementation of named footnotes. He also acted as
mailing list moderator for some time.

• Kevin Rogers contributed code to access VM files on remote hosts.

https://public-inbox.org/
https://orgmode.org/list/

Appendix B: History and Acknowledgments 296

• Frank Ruell solved the mystery of the ‘keymapp nil’ bug, a conflict with ‘allout.el’.

• Jason Riedy generalized the send-receive mechanism for Orgtbl tables with extensive
patches.

• Philip Rooke created the Org reference card, provided lots of feedback, developed and
applied standards to the Org documentation.

• Christian Schlauer proposed angular brackets around links, among other things.

• Paul Sexton wrote ‘org-ctags.el’.

• Tom Shannon’s ‘organizer-mode.el’ inspired linking to VM/BBDB/Gnus.

• Ilya Shlyakhter proposed the Archive Sibling, line numbering in literal examples, and
remote highlighting for referenced code lines.

• Stathis Sideris wrote the ‘ditaa.jar’ ASCII to PNG converter that is now packaged
into the org-contrib repository.

• Daniel Sinder came up with the idea of internal archiving by locking subtrees.

• Dale Smith proposed link abbreviations.

• James TD Smith has contributed numerous patches for useful tweaks and features.

• Adam Spiers asked for global linking commands, inspired the link extension system,
added support for Mairix, and proposed the mapping API.

• Ulf Stegemann created the table to translate special symbols to HTML, LATEX, UTF-8,
Latin-1 and ASCII.

• Andy Stewart contributed code to ‘ol-w3m.el’, to copy HTML content with links
transformation to Org syntax.

• David O’Toole wrote ‘org-publish.el’ and drafted the manual chapter about pub-
lishing.

• Jambunathan K. contributed the ODT exporter.

• Sebastien Vauban reported many issues with LATEX and Beamer export and enabled
source code highlighting in Gnus.

• Stefan Vollmar organized a video-recorded talk at the Max-Planck-Institute for Neu-
rology. He also inspired the creation of a concept index for HTML export.

• Jürgen Vollmer contributed code generating the table of contents in HTML output.

• Samuel Wales has provided important feedback and bug reports.

• Chris Wallace provided a patch implementing the ‘QUOTE’ block.

• David Wainberg suggested archiving, and improvements to the linking system.

• Carsten Wimmer suggested some changes and helped fix a bug in linking to Gnus.

• Roland Winkler requested additional key bindings to make Org work on a TTY.

• Piotr Zielinski wrote ‘org-mouse.el’, proposed agenda blocks and contributed various
ideas and code snippets.

• Marco Wahl wrote ‘ol-eww.el’.

https://git.sr.ht/~bzg/org-contrib

Appendix C: GNU Free Documentation License 297

Appendix C GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/

Appendix C: GNU Free Documentation License 298

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LATEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix C: GNU Free Documentation License 299

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix C: GNU Free Documentation License 300

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix C: GNU Free Documentation License 301

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix C: GNU Free Documentation License 302

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix C: GNU Free Documentation License 303

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/copyleft/

Appendix C: GNU Free Documentation License 304

C.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with

the Front-Cover Texts being LIST, and with the Back-Cover Texts

being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Chapter 18: Main Index 305

18 Main Index

*
‘*this*’, in ‘post’ header argument 246

+
‘+’ suffix, in properties . 69

‘_ALL’ suffix, in properties . 69

A
abbreviation, links . 47
abstract, in LATEX export . 182
action, for publishing . 213
activation . 3
active region . 11
add-on packages . 278
agenda . 114
agenda dispatcher . 113
agenda files . 112
agenda files, removing buffers 134
agenda filtering . 124
agenda views . 112
agenda views, custom . 134
agenda views, exporting . 137
agenda views, main example 134
agenda views, optimization 287
agenda views, user-defined . 285
agenda*, as an agenda views 134
agenda, as an agenda views 134
agenda, column view . 139
agenda, pipe . 287
agenda, with block views . 135
alignment in tables . 22
‘ALLTAGS’, special property . 70
‘ALT_TITLE’, property . 158, 198
angle bracket links . 39
angular brackets, around links 43
anniversaries, from BBDB . 116
API, for mapping . 290
API, for properties . 289
‘APPENDIX’, property . 198
appointment . 78, 117
appointment reminders . 117
appt.el . 117
APPT WARNTIME, keyword 117
archive locations . 97
‘ARCHIVE’, keyword . 97, 262
‘ARCHIVE’, property . 71, 97
‘ARCHIVE’, tag . 98
archived entries, in agenda views 112
archiving . 96, 97

arguments, in code blocks . 233
ASCII export . 161
‘ASCII’, keyword . 161
Atom feeds . 99, 110
attach from Dired . 110
attachment links . 41
attachment links, searching . 47
attachments . 99, 106
‘ATTR_ASCII’, keyword . 162
‘ATTR_BEAMER’, keyword . 165
‘ATTR_HTML’, keyword . 170, 171
‘ATTR_LATEX’, keyword 180, 181, 182, 183, 184
‘ATTR_ODT’, keyword 188, 189, 193
‘ATTR_TEXINFO’, keyword 199, 201, 202
author . 3
‘author’, macro . 159
‘AUTHOR’, keyword . 154
auto clocking out after idle time 93
auto-save, in code block editing 251
autoload . 3

B
babel, languages . 251
babel, library of . 256
backslashes, in links . 39
backtrace of an error . 4
BBDB links . 41
BBDB, anniversaries . 116
Beamer export . 162
‘BEAMER’, keyword . 164
‘BEAMER_ACT’, property . 164
‘BEAMER_COL’, property . 164
‘BEAMER_ENV’, property . 163
‘BEAMER_FONT_THEME’, keyword 163
‘BEAMER_HEADER’, keyword . 163
‘BEAMER_INNER_THEME’, keyword 163
‘BEAMER_OPT’, property . 164
‘BEAMER_OUTER_THEME’, keyword 163
‘BEAMER_REF’, property . 164
‘BEAMER_SUBTITLE’, property 164
‘BEAMER_THEME’, keyword . 163
‘BEGIN clocktable’ . 89
‘BEGIN columnview’ . 75
‘BEGIN_CENTER’ . 141
‘BEGIN_COMMENT’ . 160
‘BEGIN_EXAMPLE’ . 146
‘BEGIN_EXPORT ascii’ . 161
‘BEGIN_EXPORT beamer’ . 164
‘BEGIN_EXPORT html’ . 169
‘BEGIN_EXPORT latex’ . 178
‘BEGIN_EXPORT texinfo’ . 199
‘BEGIN_JUSTIFYLEFT’ . 162
‘BEGIN_JUSTIFYRIGHT’ . 162
‘BEGIN_QUOTE’ . 141

Chapter 18: Main Index 306

‘BEGIN_SRC’ . 146, 229
‘BEGIN_VERSE’ . 141
bibliography . 224
‘BIBLIOGRAPHY’, keyword . 224
‘BIND’, keyword . 156
block agenda . 135
‘BLOCKED’, special property . 70
blocking, of checkboxes . 60
blocks, folding . 17
bold text, markup rules . 141
boolean logic, for agenda searches 118
bracket links . 39
bug reports . 3

C
C-c C-c, overview . 261
cache results of code evaluation 241
‘cache’, header argument . 241
Calc package . 24
calc.el . 267
calculations, in tables . 21, 24
calendar commands, from agenda 133
calendar integration . 115
calendar, for selecting date . 82
‘CALL’, keyword . 239
‘CAPTION’, keyword 150, 170, 171
captions, markup rules . 150
capture . 99
capture protocol . 271
capturing, from agenda . 132
category . 122
category filtering, in agenda 124
category, for tags/property match 118
‘CATEGORY’, keyword . 122, 262
‘CATEGORY’, property . 71, 122
cdlatex.el . 268
CDLATEX . 145
center blocks . 141
center image in LaTeX export 180
change agenda display . 127
checkbox blocking . 60
checkbox statistics . 60
checkboxes . 60
checkboxes and TODO dependencies 54
children, subtree visibility state 7
‘CINDEX’, keyword . 199
citation . 223
citation processor . 223
‘CITE_EXPORT’, keyword . 225
‘CLASS’, property . 205
clean outline view . 259
‘CLOCK_MODELINE_TOTAL’, property 87
clocking time . 86
‘CLOCKSUM’, special property 70, 139
‘CLOCKSUM_T’, special property 70, 140
clocktable, dynamic block . 88
‘CLOSED’, special property . 70

code block, batch execution 257
code block, editing . 251
code block, evaluating . 239
code block, exporting . 247
code block, extracting source code 248
code block, key bindings . 256
code block, languages . 251
code block, library . 256
code block, noweb reference 252
code block, results of evaluation 242
code block, structure . 229
code line references, markup rules 146
code text, markup rules . 141
‘colnames’, header argument 233
column formula . 30
column view, for properties . 72
column view, in agenda . 139
column, of field coordinates . 25
‘COLUMNS’, keyword . 72
‘COLUMNS’, property . 71, 262
comma escape, in literal examples 146
commands, in agenda buffer 126
comment block . 160
comment lines . 160
comment trees . 160
commented entries, in agenda views 112
‘comments’, header argument 249
completion, of dictionary words 258
completion, of file names . 45
completion, of link abbreviations 258
completion, of links . 45
completion, of option keywords 53, 258
completion, of property keys 258
completion, of tags . 63, 258
completion, of TEX symbols 258
completion, of TODO keywords 51, 258
concept index, in Texinfo export 199
constants, in calculations . 26
constants.el . 268
‘CONSTANTS’, keyword . 26, 262
contact . 3
contents, global visibility state 8
continuous clocking . 93
control code block evaluation 240
convert . 191
converter . 191
‘COOKIE_DATA’, property . 59, 60
coordinates, of field . 25
copying notes . 96
copying, of subtrees . 10
‘COPYING’, property . 197
countdown timer . 94
counter, macro . 160
‘CREATOR’, keyword . 154
CSS, for HTML export . 172
cua.el . 269
custom agenda views . 134
custom date/time format . 82

Chapter 18: Main Index 307

custom search strings . 48
‘CUSTOM_ID’, property . 40, 43
cutting, of subtrees . 10
cycling, in plain lists . 14
cycling, of agenda files . 113
cycling, of TODO states . 50
cycling, visibility . 7

D
daily agenda . 114
dash, special symbol . 143
data type index, in Texinfo export 199
date format, custom . 82
date range . 79
date stamp . 78
date stamps . 78
date tree . 101
‘date’, macro . 160
date, reading in minibuffer . 80
‘DATE’, keyword . 154
dates . 78
‘DEADLINE’ marker . 83
‘DEADLINE’, special property 70
deadlines . 78
debugging, of table formulas 34
default header arguments per language 231
defining new protocols . 271
demotion, of subtrees . 10
dependencies, of TODO states 54
‘DESCRIPTION’, keyword 163, 166, 175, 186
‘DESCRIPTION’, property 198, 205
diary entries, creating from agenda 133
diary integration . 115
diary style timestamps . 79
dictionary word completion 258
‘dir’ file, in Texinfo export 198
‘dir’, header argument . 238
‘DIR’, property . 108
directories, for publishing . 212
dispatcher, for export commands 152
dispatching agenda commands 113
display changing, in agenda 127
dnd . 276
doc, docx, rtf . 191
document structure . 7
document title . 155
documentation . 266
DONE, final TODO keyword 53
drag and drop . 276
dragging files . 276
drawer, for properties . 68
drawer, for state change recording 55
drawers . 16
dropping files . 276
duration, computing . 29
dvipng . 171, 190
dvisvgm . 171, 190

dynamic blocks . 284
dynamic indentation . 259

E
ecomplete.el . 269
editing tables . 18
editing, of table formulas . 31
edits, catching invisible . 9
effort estimates . 93
effort filtering, in agenda . 124
‘EFFORT’, property . 93
Elisp links . 41
ellipsis, special symbol . 143
ELPA . 3
‘email’, macro . 159
‘EMAIL’, keyword . 154
embedding images in ODT 188
entities . 142
enum, Texinfo attribute . 199
‘epilogue’, header argument 239
escape character . 266
escape syntax, for links . 39
‘eval’, header argument . 240
evaluate time range . 80
example block . 146
example blocks, in LATEX export 182
‘EXCLUDE_TAGS’, keyword . 154
excluding entries from table of contents 157
export back-end . 152
export backend . 152
export, dispatcher . 152
export, include files . 158
export, OpenDocument . 185
Export, settings . 154
Export, writing backends . 280
‘EXPORT_FILE_NAME’, keyword 155
‘EXPORT_FILE_NAME’, property 185
‘EXPORT_LATEX_CLASS’, property 176
‘EXPORT_LATEX_CLASS_OPTIONS’, property 176
exporting . 152
exporting agenda views . 137
exporting, not . 160
‘exports’, header argument 247
extended TODO keywords . 51
external archiving . 97
external links . 41
external links, in HTML export 169

F
faces, for TODO keywords . 53
FAQ . 1
feature requests . 3
feedback . 3
field coordinates . 25
field formula . 30
field references . 24

Chapter 18: Main Index 308

file links . 41
file links, searching . 47
file name completion . 45
‘file’, header argument . 244
‘file-desc’, header argument 244
‘file-ext’, header argument 244
‘file-mode’, header argument 244
‘FILE’, special property . 70
files for agenda . 112
files, adding to agenda list . 112
files, selecting for publishing 213
‘FILETAGS’, keyword . 63, 262
filladapt.el . 269
filtering entries, in agenda . 124
Filters, exporting . 206
‘FINDEX’, keyword . 199
‘FLAGGED’, tag . 275
folded, subtree visibility state 7
folding, sparse trees . 12
following links . 45
footers, in code blocks . 239
footnotes . 150
format specifier, in spreadsheet 26
format, of links . 39
‘formatter’, dynamic block parameter 76
formatting source code, markup rules 146
formula debugging . 34
formula editing . 31
formula syntax, Calc . 26
formula, for individual table field 30
formula, for range of fields . 30
formula, for table column . 30
formula, in tables . 21
function index, in Texinfo export 199

G
global cycling . 8
global key bindings . 3
global TODO list . 117
global visibility states . 8
Gnus links . 41
graph, in tables . 36
group tags . 66
group tags, as regular expressions 118
grouping columns in tables . 23

H
habits . 56
hacking . 278
header arguments per language 231
header arguments, in code blocks 230
header lines, in tables . 18
header, for LATEX files . 176
‘HEADER’, keyword . 232
headers, in code blocks . 239
headline navigation . 9

headline tagging . 63
headline, promotion and demotion 10
headlines . 7
headlines, in HTML export 169
Help links . 41
hide text . 7
hiding leading stars . 259
‘hlines’, header argument . 243
hooks . 278
horizontal rule, in tables . 18
horizontal rules, in ASCII export 162
horizontal rules, in LATEX export 183
horizontal rules, markup rules 150
‘html-style’, ‘OPTIONS’ item 173
HTML export . 166
HTML export, CSS . 172
HTML, and Orgtbl mode . 283
‘HTML’, keyword . 169
‘HTML_CONTAINER’, keyword 167
‘HTML_CONTAINER_CLASS’, property 173
‘HTML_DOCTYPE’, keyword . 167
‘HTML_HEAD’, keyword . 167, 173
‘HTML_HEAD_EXTRA’, keyword 167, 173
‘HTML_HEADLINE_CLASS’, property 173
‘HTML_INCLUDE_STYLE’, keyword 173
‘HTML_LINK_HOME’, keyword 167
‘HTML_LINK_UP’, keyword . 167
‘HTML_MATHJAX’, keyword . 167
‘HTML5’, export new elements 168
hyperlinks . 39
hyperlinks, adding new types 278
hyperlinks, adding preview behavior 280

I
‘ICAL-TTL’, keyword . 205
iCalendar export . 204
id links, searching . 47
‘ID’, property . 43, 76, 204
ideas . 3
identify, ImageMagick . 188
idle, resolve, dangling . 92
image, centering in LaTeX export 180
ImageMagick . 171, 190
images, embedding in ODT 188
images, inline in HTML . 170
images, inline in LaTeX . 180
images, markup rules . 149
imenu.el . 268
in-buffer settings . 262
inactive timestamp . 79
include files, during export . 158
‘INCLUDE’, keyword . 158
Indent mode . 260
indentation, in code blocks 251
indentation, in source blocks 147
index, in a publishing project 220
‘INDEX’, keyword . 220

Chapter 18: Main Index 309

‘INDEX’, property . 199
indic, Texinfo attribute . 200
Info . 266
Info directory file, in Texinfo export 198
Info links . 41
‘INFOJS_OPT’, keyword . 173
inheritance, of properties . 71
inheritance, of tags . 63
inline, in LATEX export . 178
inlining images . 149
inlining images in HTML . 170
inlining images in LaTeX . 180
‘input-file’, macro . 160
inserting links . 45
insertion, of templates . 258
install-info, in Texinfo export 198
installation . 2
Installing Org protocol . 271
internal links . 40
internal links, in HTML export 169
introduction . 1
IRC links . 41
italic text, markup rules . 141
‘ITEM’, special property . 70

J
jumping, to headlines . 9

K
key bindings, global . 3
keystroke index, in Texinfo export 199
keyword options . 53
‘keyword’, macro . 159
‘KEYWORDS’, keyword 163, 167, 176, 186
‘KINDEX’, keyword . 199

L
laggy . 4
language specific default header arguments 231
language specific header arguments properties

. 231
language, in code blocks . 229
‘LANGUAGE’, keyword 154, 175, 177
‘LAST_REPEAT’, property . 87
‘LATEX’, keyword . 178
‘LATEX_CLASS’, keyword . 176
‘LATEX_CLASS_OPTIONS’, keyword 176
‘LATEX_COMPILER’, keyword 175, 176
‘LATEX_HEADER’, keyword 167, 176, 177
‘LATEX_HEADER_EXTRA’, keyword 176, 177
LATEX class . 176
LATEX export . 174
LATEX fragments . 143
LATEX fragments, preview . 144
LATEX header . 176

LATEX interpretation . 143
LATEX sectioning structure . 176
LATEX, and Orgtbl mode . 282
Latin-1 export . 161
lettered lists, in Texinfo export 199
level, for tags/property match 118
LibreOffice . 185
limits, in agenda . 125
line breaks, markup rules . 141
‘lines’, include . 158
link abbreviations . 47
link abbreviations, completion of 258
link completion . 45
link format . 39
‘LINK’, keyword . 47, 262
links, external . 41
links, finding next/previous . 46
links, handling . 43
links, in HTML export . 169
links, in ODT export . 187
links, internal . 40
links, publishing . 219
links, radio targets . 41
links, returning to . 46
linter . 266
Lisp forms, as table formulas 28
list of listings . 157
list of tables . 157
lists, in other modes . 281
lists, ordered . 13
lists, plain . 13
literal examples, markup rules 146
‘LOCATION’, property . 205
‘LOG_INTO_DRAWER’, property 55, 87
logging, of progress . 55
‘LOGGING’, property . 56, 72
lookup functions in tables . 31
lualatex . 175

M
macro replacement, during export 159
‘MACRO’, keyword . 159
maintainer . 3
mapping entries, API . 290
mappings in open-source protocol 273
mark ring . 46
Markdown export . 184
marking characters, tables . 35
match view . 118
matching, of properties . 118
matching, of tags . 118
matching, tags . 63
math symbols . 142
MathJax . 171
MathML . 189
MH-E links . 41
‘minlevel’, include . 158

Chapter 18: Main Index 310

minor mode for tables . 23
‘mkdirp’, header argument 238, 249
mode, for Calc . 26
‘modification-time’, macro 160
motion commands in agenda 126
motion, between headlines . 9
multiple formula lines . 33
multiple items in Texinfo lists 200

N
‘n’, macro . 160
name, of column or field . 26
‘NAME’ keyword, in source blocks 229
‘NAME’, keyword . 26, 40
named references . 26
names as TODO keywords . 51
narrow columns in tables . 22
‘no-expand’, header argument 250
‘NOBLOCKING’, property . 54
not responsive . 4
‘noweb’, header argument . 252
‘noweb-ref’, header argument 252
‘noweb-sep’, header argument 254
number headlines . 261

O
occur, command . 12
occur-tree . 134
odd-levels-only outlines . 259
ODT . 185
‘ODT’, keyword . 193
‘ODT_STYLES_FILE’, keyword 186, 187
‘only-contents’, include . 159
open-source protocol . 272
OpenDocument . 185
operator, for property search. 119
option keyword completion 258
options, for custom agenda views 136
options, for export . 154
options, for publishing . 214
‘OPTIONS’, keyword . 154
ordered lists . 13
‘ORDERED’, property . 54, 60
Org export . 196
Org mode, turning on . 3
Org Num mode . 261
Org protocol, set-up . 271
org-agenda, command . 115
org-latex-default-quote-environment 184
‘ORG-IMAGE-ACTUAL-WIDTH’, property 149
Orgtbl mode . 23, 281
‘ORGTBL’, keyword . 281
outline tree . 7
‘output-dir’, header argument 244
overview, global visibility state 8

P
packages, interaction with other 267
‘padline’, header argument 249
paragraphs, markup rules . 141
passing arguments to code blocks 233
pasting files, images from clipboard 276
pasting, of subtrees . 10
PDF export . 174
pdflatex . 175
per-file keywords . 53
performance . 4
‘PINDEX’, keyword . 199
plain links . 39
plain lists . 13
plain lists, in LATEX export 181
plain text external links . 43
plot tables using Gnuplot . 36
‘PLOT’, keyword . 36
‘post’, header argument . 246
presentation, of agenda items 122
print edition . 1
‘PRINT_BIBLIOGRAPHY’, keyword 226
printing sparse trees . 13
priorities . 58
priorities, of agenda items . 123
‘PRIORITIES’, keyword . 59, 262
priority cookie . 58
‘PRIORITY’, special property 70
profile . 4
profiler . 5
program index, in Texinfo export 199
progress logging . 55
projects, for publishing . 212
‘prologue’, header argument 239
promotion, of subtrees . 10
proof, in LATEX export . 182
properties . 68
properties, API . 289
properties, column view . 72
properties, inheritance . 71
properties, searching . 71
properties, special . 70
property syntax . 68
‘property’, macro . 160
‘PROPERTY’, keyword . 69, 262
protocol, capture . 271
protocol, new protocol . 271
protocol, open-source . 272
protocol, open-source rewritten URL 272
protocol, open-source, set-up mapping 273
protocol, store-link . 271
protocols, for external access 99, 271
publishing . 212
publishing options . 214

Q
query editing, in agenda . 124

Chapter 18: Main Index 311

quote blocks . 141
quote blocks, in LATEX export 184

R
radio button, checkbox as . 61
radio tables . 281
radio targets . 41
range formula . 30
range references . 25
ranges, time . 78
recomputing table fields . 34
references . 24
references, named . 26
references, remote . 26
references, to a different table 26
references, to fields . 24
references, to ranges . 25
refiling notes . 96
refresh set-up . 262
region, active . 11
regular expressions syntax . 265
regular expressions, in searches 265
regular expressions, with tags search 118
relative timer . 94
reminders . 117
remote editing, bulk, from agenda 132
remote editing, from agenda 130
remote editing, undo . 130
remote references . 26
repeat-mode, org-mode . 276
repeated tasks . 85
repeating navigation commands 276
report, of clocked time . 88
reporting a bug . 3
request a feature . 3
resolve idle time . 92
‘results’, header argument 242
‘results’, macro . 160
‘RESULTS’, keyword . 239
revealing context . 8
rewritten URL in open-source protocol 272
Rmail links . 41
row separator, in tables . 18
row, of field coordinates . 25
‘rownames’, header argument 234
RSS feeds . 99, 110
rsync . 220

S
‘SCHEDULED’ marker . 83
‘SCHEDULED’, special property 70
scheduling . 78
scripts, for agenda processing 287
search option in file links . 47
search option in id links . 47
search strings, custom . 48

search view . 120
searching for tags . 67
searching, for text . 120
searching, of properties . 71
sectioning structure, for LATEX export 176
‘SELECT_TAGS’, keyword . 154
‘sep’, header argument . 244
sep, Texinfo attribute . 200
‘SEQ_TODO’, keyword . 53, 265
‘session’, header argument 238
setting tags . 63
‘SETUPFILE’, keyword . 154, 263
sexp timestamps . 79
‘shebang’, header argument 249
shell links . 41
shift-selection . 268
shift-selection-mode . 15
show all, command . 8
show all, global visibility state 8
show branches, command . 8
show children, command . 8
show hidden text . 7
shy hyphen, special symbol 143
sitemap, of published pages 219
slow . 4
slowdown . 4
smartphone . 274
sorting, of agenda items . 123
sorting, of plain list . 16
sorting, of subtrees . 10
source block . 146
source blocks, in LATEX export 181
source code, batch execution 257
source code, block structure 229
source code, editing . 251
source code, evaluating . 239
source code, exporting . 247
source code, extracting . 248
source code, inline . 229
source code, languages . 251
source code, library . 256
source code, noweb reference 252
source code, results of evaluation 242
source code, working with . 228
sparse tree, for deadlines . 84
sparse tree, for TODO . 50
sparse tree, tag based . 63
sparse trees . 12
special blocks, in ASCII export 162
special blocks, in LATEX export 182
special keywords . 262
special symbols . 142
special symbols, in-buffer display 143
speed keys . 259
speedbar.el . 268
spreadsheet capabilities . 24
square brackets, around links 43
startup visibility . 8

Chapter 18: Main Index 312

‘STARTUP’, keyword . 9, 17, 263
statistics, for checkboxes . 60
statistics, for TODO items . 59
store-link protocol . 271
storing link, in a source code buffer 148
storing links . 43
strike-through text, markup rules 141
structure editing . 10
structure of document . 7
‘STYLE’, property . 56
styles, custom . 187, 192
‘SUBAUTHOR’, keyword . 196, 197
sublevels, inclusion into tags match 63
sublevels, inclusion into TODO list 117
subscript . 142
‘SUBTITLE’, keyword . . 161, 163, 167, 176, 186, 196
subtree cycling . 7
subtree visibility states . 7
subtree, cut and paste . 10
subtree, subtree visibility state 7
subtrees, cut and paste . 10
summary . 1
‘SUMMARY’, property . 205
superscript . 142
switches, in code blocks . 230
syntax checker . 266
syntax, noweb . 252
syntax, of formulas . 26

T
table editor, built-in . 18
table editor, table.el . 268
table indirection . 26
table lookup functions . 31
table of contents . 157
table of contents, exclude entries 157
table syntax . 18
table-type, Texinfo attribute 199
table.el . 268
tables . 18
tables, in HTML . 170
tables, in LATEX export . 178
tables, in ODT export 187, 193
tables, in other modes . 281
tag completion . 258
tag filtering, in agenda . 124
tag inheritance . 63
tag searches . 67
tags . 63
tags hierarchy . 66
tags view . 118
tags, as an agenda view . 134
tags, groups . 66
tags, setting . 63
tags-todo . 134
tags-tree . 134
‘TAGS’, keyword . 64, 265

‘TAGS’, special property . 70
‘tangle’, header argument . 249
‘tangle-mode’, header argument 249
tangling . 248
targets, for links . 40
targets, radio . 41
tasks, breaking down . 59
tasks, repeated . 85
‘TBLFM’ keywords, multiple . 33
‘TBLFM’, keyword . 30
‘TBLFM’, switching . 33
template expansion . 258
template insertion . 258
template, custom . 187, 192
templates, for Capture . 100
Tempo . 258
TEX interpretation . 143
TEX symbol completion . 258
‘TEXINFO’, keyword . 199
‘TEXINFO_CLASS’, keyword 196, 197, 198
‘TEXINFO_DIR_CATEGORY’, keyword 197, 198
‘TEXINFO_DIR_DESC’, keyword 197, 198
‘TEXINFO_DIR_NAME’, keyword 197, 198
‘TEXINFO_FILENAME’, keyword 196, 197
‘TEXINFO_HEADER’, keyword 197
‘TEXINFO_POST_HEADER’, keyword 197
‘TEXINFO_PRINTED_TITLE’, keyword 197
text areas, in HTML . 171
text search . 120
time clocking . 86
time format, custom . 82
time grid . 122
time range . 79
time, computing . 29
‘time’, macro . 160
time, reading in minibuffer . 80
time-of-day specification . 122
timerange . 79
times . 78
timestamp . 78
timestamp, inactive . 79
timestamp, with repeater interval 78
‘TIMESTAMP’, special property 70
‘TIMESTAMP_IA’, special property 70
timestamps . 78
‘TIMEZONE’, property . 205
‘TINDEX’, keyword . 199
‘title’, macro . 159
‘TITLE’, keyword . 155
‘toc’, in ‘OPTIONS’ keyword 157
‘TOC’, keyword . 157
todo, as an agenda view . 134
todo-tree . 134
TODO dependencies . 54
TODO dependencies, ‘NOBLOCKING’ 54
TODO items . 50
TODO keyword matching . 117
TODO keyword matching, with tags search . . . 118

Chapter 18: Main Index 313

TODO keyword sets . 52
TODO keywords completion 258
TODO list, global . 117
TODO types . 51
TODO workflow . 51
‘TODO’, keyword . 53, 265
‘TODO’, special property . 70
top headline filtering, in agenda 124
Top node, in Texinfo export 199
transient mark mode . 11
translator function . 283
trees, sparse . 12
trees, visibility . 7
tty key bindings . 270
two-column tables, in Texinfo export 199
‘TYP_TODO’, keyword . 53, 265
types as TODO keywords . 51

U
underlined text, markup rules 141
undoing remote-editing events 130
unison . 220
‘UNNUMBERED’, property . 156
unoconv . 186
updating, table . 34
URL links . 41
Usenet links . 41
using sessions in code blocks 238
UTF-8 export . 161

V
‘var’, header argument . 233
variable index, in Texinfo export 199

vectors, in table calculations 26
verbatim blocks, in LATEX export 182
verbatim text, markup rules 141
verse blocks . 141
verse blocks, in LATEX export 183
view file commands in agenda 126
‘VINDEX’, keyword . 199
viper.el . 269
visibility cycling . 7
visibility cycling, drawers . 16
‘VISIBILITY’, property . 9
visible text, printing . 13
VM links . 43

W
Wanderlust links . 43
weekly agenda . 114
windmove.el . 269
workflow states as TODO keywords 51
working directory, in a code block 238
‘wrap’, header argument . 245

X
xelatex . 175

Y
yasnippet.el . 270

Z
zero width space . 266
zip . 185

Chapter 19: Key Index 314

19 Key Index

!
! . 65
! (Agenda dispatcher) . 121

#
(Agenda dispatcher) . 121

$
$. 130

%
% . 132

’
' . 146

*
* . 132
* (Agenda dispatcher) . 114

+
+ . 131

,
, . 131

-
- . 131

.

. 82, 128

/
/ (Agenda dispatcher) . 114

:
: . 131

<
< . 75, 82
< (Agenda dispatcher) . 114

< < (Agenda dispatcher) . 114

>
> . 75, 82, 131

?
? (Agenda dispatcher) . 276

[
[. 128

^
^ . 145

_ . 145

‘
` . 145

1
1..9,0 . 74

A
a . 75, 130
a (Agenda dispatcher) . 115
A . 127

B
b . 128
B . 132

C
c . 133
C . 92, 134
C (Agenda dispatcher) . 134
C (Capture menu . 100
C-# . 34
C-' . 113
C-, . 113
C-. 82
C-_ . 130
C-0 C-c C-w . 96
C-2 C-c C-w . 96

Chapter 19: Key Index 315

C-3 C-c C-w . 96
C-c ! . 80
C-c # . 62
C-c $. 97
C-c % . 46
C-c & . 46
C-c ' . 32, 147, 159, 251, 268
C-c * . 12, 16, 34
C-c + . 21
C-c , . 58
C-c - . 15, 20
C-c . 79
C-c / . 12, 269
C-c / / . 13
C-c / a . 84
C-c / b . 84
C-c / d . 84
C-c / m . 67, 71
C-c / p . 71
C-c / r . 13
C-c / t . 50
C-c ; . 161
C-c < . 80
C-c = . 31, 32
C-c > . 80
C-c ? . 32
C-c @ . 11
C-c [. 112
C-c] . 113
C-c ^ . 12, 16, 20
C-c ` . 21
C-c \ . 67, 71
C-c | . 18, 21
C-c { . 32, 145
C-c } . 32, 33
C-c ~ . 268
C-c C-* . 16
C-c C-, . 258
C-c C-a . 107, 131
C-c C-a a . 107
C-c C-a b . 107
C-c C-a c . 107
C-c C-a d . 107
C-c C-a D . 107
C-c C-a f . 107
C-c C-a F . 107
C-c C-a l . 107
C-c C-a m . 107
C-c C-a n . 107
C-c C-a o . 107
C-c C-a O . 107
C-c C-a s . 108
C-c C-a S . 108
C-c C-a z . 107
C-c C-b . 9, 165
C-c C-c . . . 15, 19, 22, 32, 33, 61, 64, 65, 69, 74, 75,

77, 80, 88, 89, 151, 239, 256, 261
C-c C-c (Capture buffer) . 99

C-c C-c c . 70
C-c C-c d . 70
C-c C-c D . 70
C-c C-c m m . 185
C-c C-c m M . 185
C-c C-c s . 70
C-c C-d . 84, 131
C-c C-e . 152
C-c C-e c a . 205
C-c C-e c c . 205
C-c C-e c f . 205
C-c C-e C-a . 153
C-c C-e C-b . 153
C-c C-e C-f . 153
C-c C-e C-s . 153
C-c C-e C-v . 13, 153
C-c C-e h h . 166
C-c C-e h H . 166
C-c C-e h o . 166
C-c C-e i i . 196
C-c C-e i t . 196
C-c C-e l b . 162
C-c C-e l B . 162
C-c C-e l l . 174
C-c C-e l L . 175
C-c C-e l o . 175
C-c C-e l O . 162
C-c C-e l p . 175
C-c C-e l P . 162
C-c C-e m o . 185
C-c C-e o o . 185
C-c C-e o O . 185
C-c C-e O o . 196
C-c C-e O v . 196
C-c C-e P a . 222
C-c C-e P f . 222
C-c C-e P p . 222
C-c C-e P x . 222
C-c C-e t a . 161
C-c C-e t A . 161
C-c C-e t l . 161
C-c C-e t L . 161
C-c C-e t u . 161
C-c C-e t U . 161
C-c C-f . 9
C-c C-j . 10
C-c C-k . 8
C-c C-k (Capture buffer) . 99
C-c C-l . 45
C-c C-M-w . 97
C-c C-n . 9
C-c C-o . 45, 80, 127, 151, 256
C-c C-p . 9
C-c C-q . 32, 63
C-c C-r . 8, 32
C-c C-s . 84, 131
C-c C-t . 50, 88
C-c C-TAB . 98

Chapter 19: Key Index 316

C-c C-u . 9
C-c C-v a . 256
C-c C-v b . 256
C-c C-v c . 256
C-c C-v C-a . 256
C-c C-v C-b . 256
C-c C-v C-c . 256
C-c C-v C-d . 256
C-c C-v C-e . 256
C-c C-v C-f . 256
C-c C-v C-g . 256
C-c C-v C-h . 256
C-c C-v C-i . 256
C-c C-v C-I . 256
C-c C-v C-j . 256
C-c C-v C-l . 256
C-c C-v C-n . 256
C-c C-v C-o . 256
C-c C-v C-p . 256
C-c C-v C-r . 256
C-c C-v C-s . 256
C-c C-v C-t . 256
C-c C-v C-u . 256
C-c C-v C-v . 256
C-c C-v C-x . 256
C-c C-v C-z . 256
C-c C-v d . 256
C-c C-v e . 239, 256
C-c C-v f . 250, 256
C-c C-v g . 256
C-c C-v h . 256
C-c C-v i . 256
C-c C-v I . 256
C-c C-v j . 256
C-c C-v l . 256
C-c C-v n . 256
C-c C-v o . 256
C-c C-v p . 256
C-c C-v r . 256
C-c C-v s . 256
C-c C-v t . 250, 256
C-c C-v u . 256
C-c C-v v . 256
C-c C-v x . 256
C-c C-v z . 256
C-c C-w . 12, 96, 130
C-c C-w (Capture buffer) . 99
C-c C-x , . 95
C-c C-x - . 95
C-c C-x . 94
C-c C-x ; . 94
C-c C-x < . 113
C-c C-x > . 113, 129
C-c C-x @ . 224
C-c C-x _ . 95
C-c C-x \ . 142, 143
C-c C-x 0 . 94
C-c C-x a . 98, 130

C-c C-x A . 98, 130
C-c C-x b . 8, 127
C-c C-x c . 11
C-c C-x C-a . 97, 130
C-c C-x C-b . 61
C-c C-x C-c . 74, 129, 139
C-c C-x C-d . 88
C-c C-x C-e . 88, 93
C-c C-x C-f . 141
C-c C-x C-i . 87
C-c C-x C-j . 88
C-c C-x C-l . 144
C-c C-x C-M-v . 148
C-c C-x C-n . 46
C-c C-x C-o . 87
C-c C-x C-p . 46
C-c C-x C-q . 88
C-c C-x C-r . 61
C-c C-x C-s . 97, 130
C-c C-x C-t . 82
C-c C-x C-u . 77, 89, 284
C-c C-x C-v . 148
C-c C-x C-w . 11, 20
C-c C-x C-x . 88
C-c C-x C-y . 11, 20
C-c C-x d . 16
C-c C-x e . 93, 131
C-c C-x f . 151
C-c C-x g . 111
C-c C-x G . 111
C-c C-x I . 266
C-c C-x M-w . 11, 20
C-c C-x o . 54, 62
C-c C-x p . 69, 231
C-c C-x q . 67
C-c C-x v . 8
C-c C-x x . 76, 89, 284
C-c C-y . 80, 88
C-c C-z . 16, 131
C-c M-w . 96
C-c RET . 20
C-c TAB . 8, 22
C-g . 65
C-k . 130
C-RET . 10
C-S-DOWN . 88
C-S-LEFT . 52, 130
C-S-RET . 10
C-S-RIGHT . 52, 130
C-S-UP . 88
C-u C-c ! . 80
C-u C-c * . 34
C-u C-c . 79
C-u C-c = . 30, 32
C-u C-c C-c . 34
C-u C-c C-l . 45
C-u C-c C-t . 55
C-u C-c C-w . 96

Chapter 19: Key Index 317

C-u C-c C-x a . 98
C-u C-c C-x C-s . 97
C-u C-c C-x C-u . 77, 89, 284
C-u C-c TAB . 22
C-u C-u C-c ! . 80
C-u C-u C-c * . 34
C-u C-u C-c . 79
C-u C-u C-c = . 32
C-u C-u C-c C-c . 34
C-u C-u C-c C-t . 52
C-u C-u C-c C-w . 96
C-u C-u C-c C-x C-s . 97
C-u C-u C-c TAB . 23
C-u C-u C-u C-c C-w . 96
C-u C-u C-u C-u C-c C-t . 54
C-u C-u C-u TAB . 8
C-u C-u TAB . 8, 9
C-u TAB . 8
C-v . 82
C-x C-s . 32, 129, 251
C-x C-w . 137
C-x n b . 12
C-x n s . 12
C-x n w . 12
C-y . 11

D
d . 127
D . 128

E
e . 75, 131
e (Agenda dispatcher) . 138
E . 129

F
f . 128
F . 127

G
g . 74, 129
G . 129

H
H . 134

I
i . 133
I . 131

J
j . 128
J . 128, 132

K
k . 92, 132
k c (Agenda) . 99
K . 92

L
l . 128

M
m . 132
m (Agenda dispatcher) 67, 71, 118
M . 134
M (Agenda dispatcher) 67, 71, 118
M-* . 132
M-a . 19
M-DOWN 11, 15, 19, 33, 75, 130, 256
M-e . 19
M-g M-n . 13
M-g M-p . 13
M-g n . 13
M-g p . 13
M-LEFT . 11, 15, 19, 75
M-m . 132
M-RET . 10, 15, 20, 95
M-RIGHT . 11, 15, 19, 75
M-S-DOWN . 20, 33
M-S-LEFT . 11, 15, 19, 82
M-S-RET . 10, 15, 62
M-S-RIGHT . 11, 15, 19, 82
M-S-UP . 19, 33
M-TAB . 32, 53, 63, 69, 258
M-UP 11, 15, 19, 33, 75, 129, 256
M-v . 82
mouse-1 . 46, 82, 151
mouse-2 . 46, 126, 151
mouse-3 . 46, 126

N
n . 75, 126

O
o . 127
O . 132

P
p . 75, 126

Chapter 19: Key Index 318

Q
q . 65, 74, 134

R
r . 74, 117, 129
R . 129
RET . 19, 46, 65, 82, 127

S
s . 92, 129
s (Agenda dispatcher) 114, 120
S . 92, 134
S-DOWN 15, 19, 33, 59, 80, 82, 131
S-LEFT . . . 16, 19, 33, 50, 52, 70, 75, 80, 82, 89, 131
S-M-DOWN . 88
S-M-LEFT . 75
S-M-RET . 51
S-M-RIGHT . 75
S-M-UP . 88
S-RET . 21
S-RIGHT . . 16, 20, 33, 50, 52, 70, 75, 80, 82, 89, 131
S-TAB . 8, 19
S-UP . 15, 19, 33, 59, 80, 82, 131
SPC . 65, 126

T
t . 130
t (Agenda dispatcher) . 51, 117
T . 130
T (Agenda dispatcher) . 117
TAB 7, 10, 14, 19, 32, 65, 126, 145

U
u . 132
U . 132

V
v . 75
v [. 128
v a . 128
v A . 128
v c . 129
v d . 127
v E . 129
v l . 128
v L . 128
v m . 127
v R . 129
v SPC . 128
v w . 127
v y . 128

W
w . 127

X
x . 134
X . 132

Z
z . 131

Chapter 20: Command and Function Index 319

20 Command and Function Index

L
lisp-complete-symbol . 32

N
next-error . 13

O
or-clock-goto . 88
org-agenda . 3
org-agenda-add-note . 131
org-agenda-archive . 130
org-agenda-archive-default-with-

confirmation . 130
org-agenda-archive-to-archive-sibling . . . 130
org-agenda-archives-mode 128
org-agenda-bulk-action . 132
org-agenda-bulk-mark . 132
org-agenda-bulk-mark-all 132
org-agenda-bulk-mark-regexp 132
org-agenda-bulk-toggle . 132
org-agenda-bulk-toggle-all 132
org-agenda-bulk-unmark . 132
org-agenda-bulk-unmark-all 132
org-agenda-capture . 132
org-agenda-clock-cancel 132
org-agenda-clock-goto 128, 132
org-agenda-clock-in . 131
org-agenda-clock-out . 132
org-agenda-clockreport-mode 129
org-agenda-columns . 129, 139
org-agenda-convert-date 134
org-agenda-date-prompt . 131
org-agenda-day-view . 127
org-agenda-deadline . 131
org-agenda-diary-entry . 133
org-agenda-do-date-earlier 131
org-agenda-do-date-later 131
org-agenda-drag-line-backward 129
org-agenda-drag-line-forward 130
org-agenda-earlier . 128
org-agenda-entry-text-mode 129
org-agenda-exit . 134
org-agenda-file-to-front 112
org-agenda-filter . 124
org-agenda-filter-by-category 124
org-agenda-filter-by-effort 124
org-agenda-filter-by-regexp 124
org-agenda-filter-by-tag 124
org-agenda-filter-by-top-headline 124
org-agenda-follow-mode . 127
org-agenda-goto . 126
org-agenda-goto-calendar 133

org-agenda-goto-date . 128
org-agenda-goto-today . 128
org-agenda-holidays . 134
org-agenda-kill . 130
org-agenda-later . 128
org-agenda-limit-interactively 126
org-agenda-list . 115
org-agenda-list-stuck-projects 121
org-agenda-log-mode . 128
org-agenda-manipulate-query-add 128
org-agenda-month-view . 127
org-agenda-next-line . 126
org-agenda-open-link . 127
org-agenda-phases-of-moon 134
org-agenda-previous-line 126
org-agenda-priority . 131
org-agenda-priority-down 131
org-agenda-priority-up . 131
org-agenda-quit . 134
org-agenda-recenter . 126
org-agenda-redo . 129
org-agenda-refile . 130
org-agenda-remove-restriction-lock . . 113, 129
org-agenda-reset-view . 128
org-agenda-schedule . 131
org-agenda-set-effort . 131
org-agenda-set-restriction-lock 113
org-agenda-set-tags . 131
org-agenda-show-and-scroll-up 126
org-agenda-show-tags . 130
org-agenda-skip-entry-if 286
org-agenda-skip-subtree-if 286
org-agenda-sunrise-sunset 134
org-agenda-switch-to . 127
org-agenda-todo . 130
org-agenda-todo-nextset 130
org-agenda-toggle-archive-tag 130
org-agenda-toggle-diary 128
org-agenda-tree-to-indirect-buffer 127
org-agenda-undo . 130
org-agenda-week-view . 127
org-agenda-write . 137
org-agenda-year-view . 128
org-anniversary . 79
org-archive-subtree . 97
org-archive-subtree-default 97
org-archive-to-archive-sibling 98
org-ascii-convert-region-to-ascii 211
org-ascii-convert-region-to-utf8 211
org-ascii-export-as-ascii 161
org-ascii-export-to-ascii 161
org-attach . 107, 131
org-attach-attach . 107
org-attach-buffer . 107
org-attach-dired-to-subtree 110

Chapter 20: Command and Function Index 320

org-attach-new . 107
org-attach-open . 107
org-attach-open-in-emacs 107
org-attach-reveal . 107
org-attach-reveal-in-emacs 107
org-attach-sync . 107
org-babel-check-src-block 256
org-babel-demarcate-block 256
org-babel-describe-bindings 256
org-babel-do-key-sequence-in-edit-buffer

. 256
org-babel-execute-buffer 256
org-babel-execute-maybe 256
org-babel-execute-src-block 239, 256
org-babel-execute-subtree 256
org-babel-expand-src-block 256
org-babel-goto-named-result 256
org-babel-goto-named-src-block 256
org-babel-goto-src-block-head 256
org-babel-insert-header-arg 256
org-babel-load-in-session 256
org-babel-lob-ingest . 256
org-babel-next-src-block 256
org-babel-open-src-block-result 256
org-babel-pop-to-session 256
org-babel-previous-src-block 256
org-babel-sha1-hash . 256
org-babel-switch-to-session-with-code . . . 256
org-babel-tangle . 250, 256
org-babel-tangle-file 250, 256
org-babel-tangle-jump-to-org 250
org-babel-view-src-block-info 256
org-backward-heading-same-level 9
org-batch-agenda . 287
org-batch-agenda-csv . 287
org-bbdb-anniversaries . 116
org-bbdb-anniversaries-future 116
org-beamer-export-as-latex 162
org-beamer-export-to-latex 162
org-beamer-export-to-pdf 162
org-beamer-select-environment 165
org-block . 79
org-buffer-property-keys 289
org-calendar-goto-agenda 133
org-capture . 3, 99
org-capture-finalize . 99
org-capture-kill . 99
org-capture-refile . 99
org-check-after-date . 84
org-check-before-date . 84
org-check-deadlines . 84
org-cite-insert . 224
org-clock-cancel . 88
org-clock-display . 88
org-clock-in . 87
org-clock-in-last . 88
org-clock-modify-effort-estimate 88, 93
org-clock-out . 87

org-clock-report . 89
org-clock-timestamps-down 88
org-clock-timestamps-up . 88
org-clocktable-try-shift 89
org-clocktable-write-default 90
org-clone-subtree-with-time-shift 11
org-columns-delete . 75
org-columns-edit-allowed 75
org-columns-edit-value . 75
org-columns-insert-dblock 76
org-columns-move-left . 75
org-columns-move-right . 75
org-columns-move-row-down 75
org-columns-move-row-up . 75
org-columns-narrow . 75
org-columns-new . 75
org-columns-next-allowed-value 75
org-columns-previous-allowed-value 75
org-columns-quit . 74
org-columns-redo . 74
org-columns-show-value . 75
org-columns-toggle-or-columns-quit 75
org-columns-widen . 75
org-compute-property-at-point 70
org-copy-subtree . 11
org-copy-visible . 8
org-cut-subtree . 11
org-cycle . 7, 10, 14
org-cycle-agenda-files . 113
org-cycle-set-startup-visibility 8, 9
org-cyclic . 79
org-date . 79
org-date-from-calendar . 80
org-dblock-update 77, 89, 284
org-deadline . 84
org-delete-property . 70
org-delete-property-globally 70
org-demote . 291
org-demote-subtree . 11
org-do-demote . 11
org-do-promote . 11
org-dynamic-block-insert-dblock 284
org-edit-special 147, 159, 268
org-emphasize . 141
org-entities-help . 143
org-entry-add-to-multivalued-property . . . 289
org-entry-delete . 289
org-entry-get . 289
org-entry-get-multivalued-property 289
org-entry-member-in-multivalued-property

. 290
org-entry-properties . 289
org-entry-put . 289
org-entry-put-multivalued-property 289
org-entry-remove-from-multivalued-property

. 289
org-evaluate-time-range 80, 88
org-export-as . 208

Chapter 20: Command and Function Index 321

org-export-define-backend 280
org-export-define-derived-backend 280
org-export-dispatch . 152
org-export-region-to-ascii 211
org-export-region-to-html 211
org-export-region-to-latex 211
org-export-region-to-md 211
org-export-region-to-texinfo 211
org-export-region-to-utf8 211
org-forward-heading-same-level 9
org-global-cycle . 8
org-goto . 10
org-goto-calendar . 80
org-html-convert-region-to-html 211
org-html-export-as-html 166
org-html-export-to-html 166
org-icalendar-combine-agenda-files 205
org-icalendar-export-agenda-files 205
org-icalendar-export-to-ics 205
org-indent-mode . 260
org-info-find-node . 266
org-insert-drawer . 16, 69
org-insert-heading . 15, 95
org-insert-heading-respect-content 10
org-insert-link . 45
org-insert-link-global . 46
org-insert-property-drawer 289
org-insert-structure-template 258
org-insert-todo-heading 10, 51, 62
org-insert-todo-heading-respect-content . . 10
org-latex-convert-region-to-latex 211
org-latex-export-as-latex 175
org-latex-export-to-latex~ 174
org-latex-export-to-pdf 175
org-latex-preview . 144
org-link-escape . 39
org-link-preview . 148
org-link-preview-clear . 149
org-link-preview-refresh 148
org-link-preview-region 148
org-link-set-parameters 279
org-lint . 266
org-list-checkbox-radio-mode 61
org-lookup-all . 31
org-lookup-first . 31
org-lookup-last . 31
org-map-entries . 290
org-mark-ring-goto . 46
org-mark-ring-push . 46
org-mark-subtree . 11
org-match-sparse-tree 67, 71
org-md-convert-region-to-md 211
org-md-export-as-markdown 185
org-md-export-to-markdown 185
org-meta-return . 10
org-mobile-pull . 275
org-mobile-push . 275
org-move-subtree-down . 11

org-move-subtree-up . 11
org-narrow-to-block . 12, 285
org-narrow-to-subtree . 12
org-next-link . 46
org-next-visible-heading . 9
org-occur . 13
org-odt-convert . 186
org-odt-export-to-odt . 185
org-open-at-point . 45, 80
org-open-at-point-global 46
org-org-export-to-org . 196
org-paste-subtree . 11
org-previous-link . 46
org-previous-visible-heading 9
org-priority . 58, 291
org-priority-down . 59
org-priority-up . 59
org-promote . 291
org-promote-subtree . 11
org-property-action . 69
org-protocol-create . 273
org-protocol-create-for-org 273
org-publish . 222
org-publish-all . 222
org-publish-current-file 222
org-publish-current-project 222
org-publish-find-date . 219
org-publish-find-property 219
org-publish-find-title . 219
org-refile . 12, 96
org-refile-cache-clear . 96
org-refile-copy . 96
org-refile-goto-last-stored 96
org-refile-reverse . 97
org-remove-file . 113
org-reveal . 8
org-save-all-org-buffers 129
org-schedule . 84
org-search-view . 120
org-set-effort . 93
org-set-property . 69, 70, 231
org-set-tags-command . 63
org-shiftcontroldown . 88
org-shiftcontrolup . 88
org-shiftmetadown . 88
org-shiftmetaup . 88
org-show-all . 8
org-show-branches . 8
org-show-children . 8
org-show-todo-tree . 50
org-sort . 12
org-sparse-tree . 12
org-speed-command-help . 259
org-speedbar-set-agenda-restriction 113
org-store-agenda-views . 138
org-store-link . 3, 43
org-submit-bug-report . 3
org-switchb . 113

Chapter 20: Command and Function Index 322

org-table-align . 19, 22
org-table-beginning-of-field 19
org-table-blank-field . 19
org-table-copy-down . 21
org-table-copy-region . 20
org-table-create-or-convert-from-region

. 18, 21
org-table-create-with-table.el 268
org-table-cut-region . 20
org-table-delete-column . 19
org-table-edit-field . 21
org-table-edit-formulas . 32
org-table-end-of-field . 19
org-table-eval-formula 30, 31, 32
org-table-expand . 23
org-table-export . 21
org-table-fedit-abort . 32
org-table-fedit-finish . 32
org-table-fedit-line-down 33
org-table-fedit-line-up . 33
org-table-fedit-lisp-indent 32
org-table-fedit-ref-down 33
org-table-fedit-ref-left 33
org-table-fedit-ref-right 33
org-table-fedit-ref-up . 33
org-table-fedit-scroll-down 33
org-table-fedit-scroll-up 33
org-table-fedit-toggle-ref-type 32
org-table-field-info . 32
org-table-header-line-mode 22
org-table-hline-and-move 20
org-table-import . 21
org-table-insert-column . 19
org-table-insert-hline . 20
org-table-insert-row . 20
org-table-iterate . 34
org-table-iterate-buffer-tables 34
org-table-kill-row . 19
org-table-move-cell-down 19
org-table-move-cell-left 19
org-table-move-cell-right 20
org-table-move-cell-up . 19
org-table-move-column-left 19
org-table-move-column-right 19
org-table-move-row-down . 19
org-table-move-row-up . 19
org-table-next-field . 19
org-table-next-row . 19
org-table-paste-rectangle 20
org-table-previous-field 19
org-table-recalculate . 34
org-table-recalculate-buffer-tables 34
org-table-rotate-recalc-marks 34
org-table-shrink . 22
org-table-sort-lines . 20
org-table-sum . 21
org-table-toggle-column-width 22
org-table-toggle-coordinate-overlays . . 32, 33
org-table-toggle-formula-debugger 32

org-table-transpose-table-at-point 22
org-table-wrap-region . 20
org-tags-view . 67, 71, 118
org-texinfo-convert-region-to-texinfo . . . 211
org-texinfo-export-to-info 196
org-texinfo-export-to-texinfo 196
org-time-stamp . 79
org-time-stamp-inactive . 80
org-timer . 94
org-timer-item . 95
org-timer-pause-or-continue 95
org-timer-set-timer . 94
org-timer-start . 94
org-timer-stop . 95
org-timestamp . 79
org-timestamp-down . 88
org-timestamp-down-day . 80
org-timestamp-inactive . 80
org-timestamp-up . 88
org-timestamp-up-day . 80
org-todo . 88, 291
org-todo-list . 117
org-toggle-archive-tag . 98
org-toggle-checkbox . 61
org-toggle-comment . 161
org-toggle-heading . 12
org-toggle-ordered-property 54, 62
org-toggle-pretty-entities 142, 143
org-toggle-radio-button . 61
org-toggle-sticky-agenda 114
org-toggle-tag . 291
org-toggle-tags-groups . 67
org-toggle-time-stamp-overlays 82
org-toggle-timestamp-overlays 82
org-tree-to-indirect-buffer 8
org-update-statistics-cookies 62
org-version . 3
org-yank . 11
orgtbl-ascii-draw . 38
orgtbl-mode . 23
orgtbl-to-csv . 283
orgtbl-to-generic . 283
orgtbl-to-html . 283
orgtbl-to-latex . 283
orgtbl-to-orgtbl . 283
orgtbl-to-texinfo . 283
orgtbl-to-tsv . 283
orgtbl-to-unicode . 283
outline-up-heading . 9

P
pcomplete . 69
previous-error . 13

W
widen . 12

Chapter 21: Variable Index 323

21 Variable Index

This is not a complete index of variables and faces, only the ones that are mentioned in the
manual. For a more complete list, use M-x org-customize and then click yourself through
the tree.

C
cdlatex-simplify-sub-super-scripts 145
constants-unit-system 26, 264

I
icalendar-export-sexp-enumeration-days . . 204

L
LaTeX-verbatim-environments 282

O
org-adapt-indentation . 260
org-agenda-auto-exclude-function 125
org-agenda-bulk-custom-functions 132, 133
org-agenda-bulk-persistent-marks 132
org-agenda-category-filter-preset 123
org-agenda-category-icon-alist 122
org-agenda-clock-consistency-checks 129
org-agenda-columns-add-appointments-to-

effort-sum . 94
org-agenda-confirm-kill 130
org-agenda-custom-commands . . . 13, 134, 136, 287
org-agenda-custom-commands-contexts 137
org-agenda-diary-file . 133
org-agenda-dim-blocked-tasks 54, 287
org-agenda-effort-filter-preset 123
org-agenda-entry-text-maxlines 129
org-agenda-exporter-settings 137, 138
org-agenda-files . 112, 123
org-agenda-ignore-properties 287
org-agenda-inhibit-startup 287
org-agenda-log-mode-items 128
org-agenda-loop-over-headlines-in-active-

region . 261
org-agenda-max-effort . 125
org-agenda-max-entries . 125
org-agenda-max-tags . 126
org-agenda-max-todos . 126
org-agenda-overriding-header 286
org-agenda-prefix-format 122
org-agenda-regexp-filter-preset 123
org-agenda-restore-windows-after-quit . . . 112
org-agenda-search-headline-for-time 122
org-agenda-show-inherited-tags 130, 287
org-agenda-skip-archived-trees 98, 112
org-agenda-skip-comment-trees 112

org-agenda-skip-deadline-prewarning-if-

scheduled . 83
org-agenda-skip-function 285, 286, 291
org-agenda-skip-function-global 285
org-agenda-skip-scheduled-delay-if-deadline

. 83
org-agenda-skip-scheduled-if-done 83
org-agenda-skip-scheduled-repeats-after-

deadline . 86
org-agenda-sorting-strategy 123
org-agenda-span . 115, 128
org-agenda-start-day . 115
org-agenda-start-on-weekday 115
org-agenda-start-with-archives-mode 128
org-agenda-start-with-clockreport-mode . . 129
org-agenda-start-with-entry-text-mode . . . 129
org-agenda-start-with-follow-mode 127
org-agenda-sticky . 114
org-agenda-tag-filter-preset 123
org-agenda-tags-column . 122
org-agenda-tags-todo-honor-ignore-options

. 118
org-agenda-text-search-extra-files . . 114, 121
org-agenda-time-grid 123, 129
org-agenda-todo-ignore-deadlines 117
org-agenda-todo-ignore-scheduled 117
org-agenda-todo-ignore-timestamp 117
org-agenda-todo-ignore-with-date 117
org-agenda-todo-list-sublevels 59, 117
org-agenda-use-tag-inheritance 63, 287
org-agenda-use-time-grid 123, 129
org-agenda-window-setup 112
org-alphabetical-lists . 13
org-archive-default-command 97, 130
org-archive-location 97, 262
org-archive-save-context-info 97
org-archive-subtree-save-file-p 97
org-ascii-links-to-notes 161
org-ascii-text-width . 161
org-attach-archive-delete 109
org-attach-auto-tag . 109
org-attach-commands . 109
org-attach-dir-relative 108
org-attach-expert . 109
org-attach-id-dir . 108
org-attach-id-to-path-function-list 109
org-attach-method . 107, 108
org-attach-preferred-new-method 109
org-attach-store-link-p 109
org-attach-use-inheritance 108
org-babel-default-header-args 230

Chapter 21: Variable Index 324

org-babel-default-inline-header-args 230
org-babel-inline-result-wrap 239
org-babel-load-languages 251
org-babel-post-tangle-hook 250
org-babel-pre-tangle-hook 250
org-babel-tangle-body-hook 250
org-babel-tangle-finished-hook 250
org-beamer-environments-default 164
org-beamer-environments-extra 164
org-beamer-frame-level . 163
org-beamer-theme . 163
org-bookmark-names-plist 100
org-calc-default-modes . 26
org-capture-last-stored 100
org-capture-templates . 100
org-capture-templates-contexts 106
org-capture-use-agenda-date 132
org-checkbox-hierarchical-statistics 60
org-cite-activate-processor 223
org-cite-biblatex-options 225
org-cite-export-processor 223
org-cite-follow-processor 223
org-cite-global-bibliography 224
org-cite-insert-processor 223
org-clock-auto-clockout-timer 93
org-clock-continuously 87, 88, 93
org-clock-display-default-range 90
org-clock-idle-time . 92
org-clock-in-prepare-hook 87
org-clock-into-drawer . 87
org-clock-mode-line-total 87
org-clock-persist . 87
org-clock-report-include-clocking-task . . 129
org-clock-x11idle-program-name 92
org-clocktable-defaults . 89
org-closed-keep-when-no-todo 55
org-coderef-label-format 147
org-columns . 74
org-columns-dblock-formatter 76
org-columns-default-format 74, 94, 129, 139
org-columns-default-format-for-agenda . . . 139
org-columns-skip-archived-trees 98
org-columns-summary-types 73
org-complete-tags-always-offer-all-agenda-

tags . 64
org-confirm-babel-evaluate 267
org-create-file-search-functions 48
org-crypt-tag-matcher . 273
org-ctrl-k-protect-subtree 7
org-cycle-emulate-tab . 7
org-cycle-global-at-bob . 8
org-cycle-include-plain-lists 14
org-cycle-inline-images-display 149
org-cycle-open-archived-trees 98
org-cycle-separator-lines 7
org-deadline-warning-days 83, 84
org-default-notes-file 99, 101
org-directory . 101

org-display-custom-times 82, 264
org-disputed-keys . 269
org-done, face . 53
org-edit-src-auto-save-idle-delay 251
org-effort-property . 93
org-enforce-todo-dependencies 54
org-entities-user . 143
org-execute-file-search-functions 48
org-export-allow-bind-keywords 156
org-export-async-init-file 153
org-export-backends . 152
org-export-before-parsing-hook 206
org-export-before-processing-functions . . 206
org-export-before-processing-hook 206
org-export-body-only . 153
org-export-creator-string 168
org-export-date-timestamp-format 154
org-export-default-language 154, 175, 177
org-export-dispatch-use-expert-ui 152
org-export-exclude-tags 154
org-export-expand-links 155
org-export-force-publishing 153
org-export-global-macros 159
org-export-headline-levels 156
org-export-html-table-tag 170
org-export-html-tag-class-prefix 172
org-export-html-todo-kwd-class-prefix . . . 172
org-export-html-use-infojs 174
org-export-in-background 153
org-export-initial-scope 153
org-export-odt-convert-capabilities 191
org-export-odt-convert-process 191
org-export-odt-convert-processes 191
org-export-odt-preferred-output-format . . 185
org-export-odt-schema-dir 196
org-export-preserve-breaks 155
org-export-replace-macros 159
org-export-select-tags . 154
org-export-time-stamp-file 156, 168
org-export-timestamp-file 156
org-export-use-babel . 248
org-export-visible-only 153
org-export-with-archived-trees 98, 155
org-export-with-author . 155
org-export-with-broken-links 155
org-export-with-clocks . 155
org-export-with-creator 155
org-export-with-date . 155
org-export-with-drawers 155
org-export-with-email . 156
org-export-with-emphasize 155
org-export-with-entities 155
org-export-with-fixed-width 155
org-export-with-footnotes 156
org-export-with-inlinetasks 156
org-export-with-latex 144, 156
org-export-with-planning 156
org-export-with-priority 156

Chapter 21: Variable Index 325

org-export-with-properties 156
org-export-with-section-numbers 156
org-export-with-smart-quotes 155
org-export-with-special-strings 155
org-export-with-statistics-cookies 156
org-export-with-sub-superscripts 142, 155
org-export-with-tables . 156
org-export-with-tags . 156
org-export-with-tasks . 156
org-export-with-timestamps 155
org-export-with-title . 156
org-export-with-toc 156, 157
org-export-with-todo-keywords 156
org-expot-creator-string 154
org-faces-easy-properties 53
org-fast-tag-selection-maximum-tags 65
org-fast-tag-selection-single-key 65
org-file-apps . 45, 107
org-fold-catch-invisible-edits 9
org-fold-catch-invisible-edits-commands . . . 9
org-fontify-emphasized-text 142
org-footnote-auto-adjust 151, 265
org-footnote-auto-label 151, 265
org-footnote-define-inline 151, 265
org-footnote-section . 7, 151
org-format-latex-header 143, 144
org-format-latex-options 144
org-global-properties 69, 94
org-goto-auto-isearch . 10
org-goto-interface . 10
org-group-tags . 67
org-habit-following-days 58
org-habit-graph-column . 58
org-habit-preceding-days 58
org-habit-show-habits-only-for-today 58
org-hide, face . 260
org-hide-block-startup 17, 265
org-hide-drawer-startup 265
org-hide-emphasis-markers 142
org-hide-leading-stars 260, 264
org-hide-macro-markers . 160
org-hierarchical-todo-statistics 59
org-html-container-element 167
org-html-doctype . 167
org-html-doctype-alist . 167
org-html-head . 167, 169, 173
org-html-head-extra 167, 169, 173
org-html-head-include-default-style 169,

173
org-html-head-include-scripts 169
org-html-html5-elements 168
org-html-html5-fancy . 168
org-html-inline-images . 170
org-html-link-home . 167
org-html-link-org-files-as-html 169
org-html-link-up . 167
org-html-mathjax-options 167
org-html-mathjax-options~ 171

org-html-mathjax-template 171
org-html-postamble . 168, 169
org-html-postamble-format 168
org-html-preamble . 168, 169
org-html-preamble-format 168
org-html-self-link-headlines 169
org-html-style-default . 173
org-html-table-align-individual-fields . . 170
org-html-table-caption-above 170
org-html-table-data-tags 170
org-html-table-default-attributes 170
org-html-table-header-tags 170
org-html-table-row-tags 170
org-html-table-use-header-tags-for-first-

column . 170
org-html-use-infojs . 169
org-html-validation-link 168
org-icalendar-alarm-time 204
org-icalendar-categories 204
org-icalendar-combined-agenda-file 205
org-icalendar-include-body 205
org-icalendar-include-todo 204
org-icalendar-store-UID 204
org-icalendar-todo-unscheduled-start 204
org-icalendar-ttl . 205
org-icalendar-use-deadline 204
org-icalendar-use-scheduled 204
org-id-link-consider-parent-id 44
org-id-link-to-org-use-id 43
org-id-link-use-context . 44
org-image-actual-width . 149
org-image-align . 150
org-image-max-width . 149
org-imenu-depth . 268
org-indent-indentation-per-level 260
org-indent-mode-turns-off-org-adapt-

indentation . 260
org-indent-mode-turns-on-hiding-stars . . . 260
org-infojs-options . 174
org-insert-mode-line-in-empty-file 3
org-irc-links-to-logs . 44
org-latex-bibtex-compiler 175
org-latex-classes . 176
org-latex-compiler . 175, 176
org-latex-default-class 176
org-latex-default-packages-alist 175, 176
org-latex-default-table-environment 178
org-latex-default-table-mode 178
org-latex-engraved-options 181
org-latex-hyperref-template 175, 176
org-latex-images-centered 180
org-latex-language-alist 175
org-latex-listings-options 181
org-latex-minted-options 181
org-latex-packages-alist 175, 176
org-latex-src-block-backend 146, 181
org-latex-subtitle-format 176
org-latex-subtitle-separate 176

Chapter 21: Variable Index 326

org-latex-tables-booktabs 179
org-latex-tables-centered 179
org-latex-title-command 175, 176
org-latex-to-mathml-convert-command 189
org-latex-to-mathml-jar-file 189
org-link-abbrev-alist 47, 262
org-link-context-for-files 44
org-link-descriptive . 264
org-link-elisp-confirm-function 267
org-link-email-description-format 44
org-link-frame-setup . 46
org-link-from-user-regexp 105
org-link-keep-stored-after-insertion 45
org-link-parameters . 279
org-link-search-must-match-exact-headline

. 40
org-link-shell-confirm-function 267
org-link-use-indirect-buffer-for-internals

. 46
org-list-automatic-rules 14, 60
org-list-demote-modify-bullet 14
org-list-indent-offset . 14
org-list-use-circular-motion 15
org-log-done . 56, 128, 264
org-log-into-drawer . 55, 131
org-log-note-clock-out 87, 264
org-log-redeadline . 84
org-log-refile . 96
org-log-repeat . 85, 264
org-log-reschedule . 84
org-log-states-order-reversed 55
org-loop-over-headlines-in-active-region

. 261
org-M-RET-may-split-line 10, 15
org-md-headline-style . 185
org-mobile-directory . 274
org-mobile-encryption . 274
org-mobile-files . 275
org-mobile-inbox-for-pull 275
org-num-face . 261
org-num-format-function 261
org-num-max-level . 261
org-num-skip-commented . 261
org-num-skip-footnotes . 261
org-num-skip-tags . 261
org-num-skip-unnumbered 261
org-odd-levels-only 118, 260, 264, 286
org-odt-category-map-alist 191
org-odt-convert-process 186
org-odt-create-custom-styles-for-srcblocks

. 191
org-odt-fontify-srcblocks 191
org-odt-pixels-per-inch 188
org-odt-preferred-output-format 185, 186
org-odt-styles-file 186, 187
org-odt-table-styles 193, 195
org-outline-path-complete-in-steps 96

org-plain-list-ordered-item-terminator . . . 13,
15

org-popup-calendar-for-date-prompt 82
org-pretty-entities 142, 265
org-pretty-entities-include-sub-

superscripts . 142
org-preview-latex-default-process 144
org-priority-default 59, 262
org-priority-faces . 58
org-priority-highest 59, 262
org-priority-lowest . 59, 262
org-priority-start-cycle-with-default 59
org-property-allowed-value-functions 290
org-protocol-default-template-key 272
org-protocol-project-alist 272
org-publish-project-alist 212, 214, 219
org-publish-use-timestamps-flag 222
org-read-date-display-live 82
org-read-date-force-compatible-dates 81
org-read-date-prefer-future 80
org-refile-allow-creating-parent-nodes . . . 96
org-refile-keep . 96
org-refile-targets . 96
org-refile-use-cache . 96
org-refile-use-outline-path 96
org-remove-highlights-with-change 13, 88
org-replace-disputed-keys 269
org-return-follows-link . 46
org-reverse-note-order . 96
org-scheduled-delay-days 83
org-show-context-detail . 12
org-sort-agenda-noeffort-is-high 124
org-sparse-tree-open-archived-trees 98
org-special-ctrl-a/e . 7
org-special-ctrl-k . 7
org-speed-commands . 259
org-src-ask-before-returning-to-edit-buffer

. 252
org-src-block-faces . 252
org-src-fontify-natively 252
org-src-lang-modes . 251
org-src-preserve-indentation 251
org-src-window-setup . 251
org-startup-align-all-tables 22, 263
org-startup-folded 9, 263, 287
org-startup-indented 260, 263
org-startup-numerated 261, 263
org-startup-shrink-all-tables 23, 263
org-startup-with-inline-images 263
org-startup-with-latex-preview 145
org-startup-with-link-previews 148
org-store-link-props . 105
org-structure-template-alist 258
org-stuck-projects . 121
org-support-shift-select 15, 16, 268
org-table-automatic-realign 22
org-table-copy-increment 21
org-table-current-column 25

Chapter 21: Variable Index 327

org-table-current-dline . 25
org-table-duration-custom-format 29
org-table-export-default-format 21
org-table-formula . 262
org-table-formula-constants 26, 262, 268
org-table-header-line-p . 22
org-table-use-standard-references 31
org-tag-alist . 64, 265
org-tag-faces . 63
org-tag-persistent-alist 64
org-tags-column . 63
org-tags-exclude-from-inheritance 63
org-tempo-keywords-alist 258
org-texinfo-classes 197, 198
org-texinfo-coding-system 197
org-texinfo-default-class 196, 198
org-texinfo-info-process 196
org-texinfo-table-default-markup 200
org-time-stamp-custom-formats 82, 264
org-time-stamp-rounding-minutes 79
org-timer-default-timer . 94
org-timestamp-custom-formats 82, 264
org-timestamp-rounding-minutes 79
org-todo, face . 53
org-todo-keyword-faces . 53
org-todo-keywords 50, 51, 117, 265
org-todo-repeat-to-state 85

org-todo-state-tags-triggers 51
org-track-ordered-property-with-tag . . . 54, 62
org-treat-insert-todo-heading-as-state-

change . 10
org-treat-S-cursor-todo-selection-as-state-

change . 50
org-use-property-inheritance 71, 231, 289
org-use-speed-commands . 259
org-use-sub-superscripts 142
org-use-tag-inheritance . 63
org-yank-adjusted-subtrees 11
org-yank-dnd-default-attach-method 276
org-yank-dnd-method . 276
org-yank-folded-subtrees 11
org-yank-image-file-name-function 276
org-yank-image-save-method 276

P
parse-time-months . 81
parse-time-weekdays . 81

U
user-full-name . 154
user-mail-address . 154

	Introduction
	Summary
	Installation
	Activation
	Feedback
	Typesetting Conventions Used in this Manual

	Document Structure
	Headlines
	Visibility Cycling
	Global and local cycling
	Initial visibility
	Catching invisible edits

	Motion
	Structure Editing
	Sparse Trees
	Plain Lists
	Drawers
	Blocks

	Tables
	Built-in Table Editor
	Column Width and Alignment
	Column Groups
	The Orgtbl Minor Mode
	The Spreadsheet
	References
	Formula syntax for Calc
	Emacs Lisp forms as formulas
	Durations and time values
	Field and range formulas
	Column formulas
	Lookup functions
	Editing and debugging formulas
	Updating the table
	Advanced features

	Org Plot

	Hyperlinks
	Link Format
	Internal Links
	Radio Targets
	External Links
	Handling Links
	Using Links Outside Org
	Link Abbreviations
	Search Options in File Links
	Custom Searches

	TODO Items
	Basic TODO Functionality
	Extended Use of TODO Keywords
	TODO keywords as workflow states
	TODO keywords as types
	Multiple keyword sets in one file
	Fast access to TODO states
	Setting up keywords for individual files
	Faces for TODO keywords
	TODO dependencies

	Progress Logging
	Closing items
	Tracking TODO state changes
	Tracking your habits

	Priorities
	Breaking Down Tasks into Subtasks
	Checkboxes

	Tags
	Tag Inheritance
	Setting Tags
	Tag Hierarchy
	Tag Searches

	Properties and Columns
	Property Syntax
	Special Properties
	Property Searches
	Property Inheritance
	Column View
	Defining columns
	Scope of column definitions
	Column attributes

	Using column view
	Capturing column view

	Dates and Times
	Timestamps
	Creating Timestamps
	The date/time prompt
	Custom time format

	Deadlines and Scheduling
	Inserting deadlines or schedules
	Repeated tasks

	Clocking Work Time
	Clocking commands
	The clock table
	Resolving idle time and continuous clocking

	Effort Estimates
	Taking Notes with a Relative Timer

	Refiling and Archiving
	Refile and Copy
	Archiving
	Moving a tree to an archive file
	Internal archiving

	Capture and Attachments
	Capture
	Setting up capture
	Using capture
	Capture templates
	Template elements
	Template expansion
	Templates in contexts

	Attachments
	Attachment defaults and dispatcher
	Attachment options
	Attachment links
	Automatic version-control with Git
	Attach from Dired

	RSS Feeds

	Agenda Views
	Agenda Files
	The Agenda Dispatcher
	The Built-in Agenda Views
	Weekly/daily agenda
	The global TODO list
	Matching tags and properties
	Search view
	Stuck projects

	Presentation and Sorting
	Categories
	Time-of-day specifications
	Sorting of agenda items
	Filtering/limiting agenda items

	Commands in the Agenda Buffer
	Custom Agenda Views
	Storing searches
	Block agenda
	Setting options for custom commands

	Exporting Agenda Views
	Using Column View in the Agenda

	Markup for Rich Contents
	Paragraphs
	Emphasis and Monospace
	Subscripts and Superscripts
	Special Symbols
	Embedded LaTeX{}
	LaTeX{} fragments
	Previewing LaTeX{} fragments
	Using CDLaTeX{} to enter math

	Literal Examples
	Images and link previews
	Images

	Captions
	Horizontal Rules
	Creating Footnotes

	Exporting
	The Export Dispatcher
	Export Settings
	Table of Contents
	Include Files
	Macro Replacement
	Comment Lines
	ASCII/Latin-1/UTF-8 export
	Beamer Export
	Beamer export commands
	Beamer specific export settings
	Frames and Blocks in Beamer
	Beamer specific syntax
	Editing support
	A Beamer example

	HTML Export
	HTML export commands
	HTML specific export settings
	HTML doctypes
	HTML preamble and postamble
	Exporting to minimal HTML
	Quoting HTML tags
	Headlines in HTML export
	Links in HTML export
	Tables in HTML export
	Images in HTML export
	Math formatting in HTML export
	Text areas in HTML export
	CSS support
	JavaScript supported display of web pages

	LaTeX{} Export
	LaTeX{}/PDF export commands
	LaTeX{} specific export settings
	LaTeX{} header and sectioning structure
	Quoting LaTeX{} code
	Tables in LaTeX{} export
	Images in LaTeX{} export
	Plain lists in LaTeX{} export
	Source blocks in LaTeX{} export
	Example blocks in LaTeX{} export
	Special blocks in LaTeX{} export
	Horizontal rules in LaTeX{} export
	Verse blocks in LaTeX{} export
	Quote blocks in LaTeX{} export

	Markdown Export
	OpenDocument Text Export
	Pre-requisites for ODT export
	ODT export commands
	ODT specific export settings
	Extending ODT export
	Applying custom styles
	Links in ODT export
	Tables in ODT export
	Images in ODT export
	Math formatting in ODT export
	LaTeX{} math snippets
	MathML and OpenDocument formula files

	Labels and captions in ODT export
	Literal examples in ODT export
	Advanced topics in ODT export

	Org Export
	Texinfo Export
	Texinfo export commands
	Texinfo specific export settings
	Texinfo file header
	Texinfo title and copyright page
	Info directory file
	Headings and sectioning structure
	Indices
	Quoting Texinfo code
	Plain lists in Texinfo export
	Tables in Texinfo export
	Images in Texinfo export
	Quotations in Texinfo export
	Key bindings in Texinfo export
	Special blocks in Texinfo export
	A Texinfo example

	iCalendar Export
	Other Built-in Backends
	Advanced Export Configuration
	Export Region

	Publishing
	Configuration
	The variable org-publish-project-alist
	Sources and destinations for files
	Selecting files
	Publishing action
	Options for the exporters
	Publishing links
	Generating a sitemap
	Generating an index

	Uploading Files
	Sample Configuration
	Example: simple publishing configuration
	Example: complex publishing configuration

	Triggering Publication

	Citation handling
	Citations
	Citation export processors
	Bibliography printing
	Bibliography options in the biblatex and csl export processors

	Working with Source Code
	Features Overview
	Structure of Code Blocks
	Using Header Arguments
	Environment of a Code Block
	Evaluating Code Blocks
	Results of Evaluation
	Exporting Code Blocks
	Extracting Source Code
	Languages
	Editing Source Code
	Noweb Reference Syntax
	Library of Babel
	Key bindings and Useful Functions
	Batch Execution

	Miscellaneous
	Completion
	Structure Templates
	Speed Keys
	A Cleaner Outline View
	Org Indent Mode
	Hard indentation

	Execute commands in the active region
	Dynamic Headline Numbering
	The Very Busy C-c C-c Key
	Summary of In-Buffer Settings
	Regular Expressions
	Org Syntax
	Context Dependent Documentation
	Escape Character
	Code Evaluation and Security Issues
	Interaction with Other Packages
	Packages that Org cooperates with
	Packages that conflict with Org mode

	Using Org on a TTY
	Protocols for External Access
	The store-link protocol
	The capture protocol
	The open-source protocol

	Org Crypt
	Org Mobile
	Setting up the staging area
	Pushing to the mobile application
	Pulling from the mobile application

	Drag and Drop & yank-media
	Repeating commands

	Hacking
	Hooks
	Add-on Packages
	Adding Hyperlink Types
	Adding Hyperlink preview
	Adding Export Backends
	Tables in Arbitrary Syntax
	Radio tables
	A LaTeX{} example of radio tables
	Translator functions

	Dynamic Blocks
	Special Agenda Views
	Speeding Up Your Agendas
	Extracting Agenda Information
	Using the Property API
	Using the Mapping API

	History and Acknowledgments
	From Carsten
	From Bastien
	List of Contributions

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Main Index
	Key Index
	Command and Function Index
	Variable Index

