From mboxrd@z Thu Jan 1 00:00:00 1970 From: Hans Kalldin Subject: org-mode Date: Sun, 28 Sep 2014 15:33:29 +0200 Message-ID: <54280E29.4060300@gmail.com> Mime-Version: 1.0 Content-Type: multipart/mixed; boundary="------------000005020805050509040907" Return-path: Received: from eggs.gnu.org ([2001:4830:134:3::10]:42941) by lists.gnu.org with esmtp (Exim 4.71) (envelope-from ) id 1XYEbc-0002A1-2O for emacs-orgmode@gnu.org; Sun, 28 Sep 2014 09:33:44 -0400 Received: from Debian-exim by eggs.gnu.org with spam-scanned (Exim 4.71) (envelope-from ) id 1XYEbX-0007RA-U9 for emacs-orgmode@gnu.org; Sun, 28 Sep 2014 09:33:40 -0400 Received: from mail-lb0-x22c.google.com ([2a00:1450:4010:c04::22c]:42597) by eggs.gnu.org with esmtp (Exim 4.71) (envelope-from ) id 1XYEbX-0007Ik-3f for emacs-orgmode@gnu.org; Sun, 28 Sep 2014 09:33:35 -0400 Received: by mail-lb0-f172.google.com with SMTP id b6so1135761lbj.3 for ; Sun, 28 Sep 2014 06:33:28 -0700 (PDT) List-Id: "General discussions about Org-mode." List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: emacs-orgmode-bounces+geo-emacs-orgmode=m.gmane.org@gnu.org Sender: emacs-orgmode-bounces+geo-emacs-orgmode=m.gmane.org@gnu.org To: emacs-orgmode@gnu.org, Hans Kalldin This is a multi-part message in MIME format. --------------000005020805050509040907 Content-Type: multipart/alternative; boundary="------------030709010907080200020205" --------------030709010907080200020205 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Hi, forgive me but have a newbie question I cannot figure out - spent several hours with documentation and searching the net... Don't see why the following buffer is not folded after running "cntl-c / m AUTO" (bound to org-sparse-tree command), the hits are only highlighted in yellow: What I expect would be: I tried this on two machines (with different file contents), one linux, one Windows-7 (shown here). I have org-mode v 8.2.7a and GNU emacs 24.3.1. my .emacs file: ;(cd "C:/Users/hkalldin/Desktop") ;(setq default-directory "C:/Documents and Settings/hkalldin/Desktop/") ;(global-set-key (kbd "C-x C-f") (lambda () (interactive) ; (cd "C:/Users/hkalldin/Desktop") ; (call-interactively 'find-file))) (package-initialize) ; basic ASCII printing to default printer: (setq printer-name "//HANSKLTW7/sharedJ6400") ;; org-mode: The following lines are always needed. Choose your own keys. (require 'org-install) (require 'org-habit) (add-to-list 'auto-mode-alist '("\\.org\\'" . org-mode)) (global-set-key "\C-cl" 'org-store-link) (global-set-key "\C-ca" 'org-agenda) (global-set-key "\C-cb" 'org-iswitchb) (global-set-key "\C-cc" 'org-capture) ;;(transient-mark-mode 1) (custom-set-variables ;; custom-set-variables was added by Custom. ;; If you edit it by hand, you could mess it up, so be careful. ;; Your init file should contain only one such instance. ;; If there is more than one, they won't work right. ;; '(org-agenda-files (quote ("~/kal.org"))) ;; '(safe-local-variable-values (quote ((eval org-display-inline-images)))) ) (custom-set-faces ;; custom-set-faces was added by Custom. ;; If you edit it by hand, you could mess it up, so be careful. ;; Your init file should contain only one such instance. ;; If there is more than one, they won't work right. ) I've also attached the org file in question. What am I doing wrong?! Many thanks in advance /Hans --------------030709010907080200020205 Content-Type: multipart/related; boundary="------------080308070903060109020002" --------------080308070903060109020002 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Hi,
forgive me but have a newbie question I cannot figure out - spent several hours with documentation and searching the net...

Don't see why the following buffer is not folded after running "cntl-c / m AUTO" (bound to org-sparse-tree command), the hits are only highlighted in yellow:


What I expect would be:


I tried this on two machines (with different file contents), one linux, one Windows-7 (shown here).
I have org-mode v 8.2.7a and GNU emacs 24.3.1.

my .emacs file:
;(cd "C:/Users/hkalldin/Desktop")
;(setq default-directory "C:/Documents and Settings/hkalldin/Desktop/")
;(global-set-key (kbd "C-x C-f")  (lambda () (interactive)
;                                     (cd "C:/Users/hkalldin/Desktop")
;                                     (call-interactively 'find-file)))
(package-initialize)

; basic ASCII printing to default printer:
(setq printer-name "//HANSKLTW7/sharedJ6400")

;; org-mode: The following lines are always needed.  Choose your own keys.
(require 'org-install)
(require 'org-habit)
(add-to-list 'auto-mode-alist '("\\.org\\'" . org-mode))
(global-set-key "\C-cl" 'org-store-link)
(global-set-key "\C-ca" 'org-agenda)
(global-set-key "\C-cb" 'org-iswitchb)
(global-set-key "\C-cc" 'org-capture)
;;(transient-mark-mode 1)
(custom-set-variables
 ;; custom-set-variables was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
 ;; '(org-agenda-files (quote ("~/kal.org")))
 ;; '(safe-local-variable-values (quote ((eval org-display-inline-images))))
 )
(custom-set-faces
 ;; custom-set-faces was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
 )

I've also attached the org file in question.

What am I doing wrong?!

Many thanks in advance
/Hans
--------------080308070903060109020002 Content-Type: image/png; name="jgcbgbii.png" Content-Transfer-Encoding: base64 Content-ID: Content-Disposition: inline; filename="jgcbgbii.png" iVBORw0KGgoAAAANSUhEUgAAAugAAAKaCAIAAADj0jsNAAAgAElEQVR4nOy9eXgVx53v3cy9 806cmXnv3HmZvHnutee1ifE4b0/uzL3G7zjJJHHMzDiAs5Imzp1n4sQLiRc2G3kl9vGG2YQA IUCAkEBIggaxSwgEYhW7WQ+b2IVA7AiJxUvifv+oc7qrqququ8/pI52Wvp/n98BRnz5Vv6pe 6ttV1fXTtO+WEOv2vZJeAAAAAABZw9133/3Vr361+fod27Q/+W7Jn3y3pFevXo899tiqVavO nj1rAQAAAABkAX/4wx+OXbzy33v37f6Vr5y9cvvsldvan3x3dq9evfLy8pqamqat2AuDwWAw GAyWVba/5c78Q6e7f+Urh5tatf/0vdmPPfZYU1NT4Yp9MBgMBoPBYFloG67duvvn/364qVXr 1avXqlWrCqv2wWAwGAwGg2WtLbp486tf/arWq1evs2fPTq/eD4PBYDAYDJa1Zl68dffdd2u9 evW6c+fOjJUHYDAYDAaDwbLWyptv9urVS+vVq5dlWUU1cRgMBoPBYLCstdnnKeEya1UcBoPB YDAYLGtt5jlKuBSvPgSDwWAwGAyWtTa16ZYjXGbXHva0/PI9sdGbXx6+ZvBLq198YdXgIbVv fbBpQunHfn4Lg8FgMBhsdu3hiebml2KF/zFkVLj2Uqxworm53bIoKV/zH9/5Ye/uPcK1//jO D0vK18iqblLjTb/Cpaj6YGzUpoHPVP/u2apXX659Z8T6/AnbZ8/aW1a6f8rkXe+N2VJUfbDD TwUYDAaDwbLfnnt1wqpNe09daA3XVm3a+9yrE9otix8/8PDq6TNuHtgVrq2ePuPHDzwsqzpG uMxZc0Rms1YefO2tut89W/X2W3Vz5+xbMD9ePnf/vLIDiysP128+c/v2p0cOX/n9OxtnrTyo SAQGg8FgMNicNUeeGjr61IXWTfHmcO3Uhdanho5utyx6d+/Rtm/Hxfkzw7W2fTt6d+8hq7rc M5RwmVt3VGbvjtn84sDqF39bvWVz4yd3Pm+98Ulb2ydXr9xuarpx8uS1mzc/+/zzP44bVf/7 DzYqEoHBYDAYDDa37uivh4052dy64UBzuHayufXXw8a0Wxa9u/do3b2tubzwQkXhhYrCC+UJ I1uayYfk5wuMTU/8qny688Pkh9bd23p37yGruo9OU8KlbF2D0Kaa+1763cqXnq9+9ZXaRZWH 2to+vXChbfOm05s3ndlS37hr57kD+y9WVzUMG1TzwnPVU+bvk6XTDjb61/drNvcOGu18NfGf tPv7F9M781sGP6ppj05kd3BvSf7knT7JbPoM5lOr7n8v+aEoC5a7f109+FHtn96RePVOH+3R Pv/E/IIrBQwGg8GiZ79JqIrz4drJ5tbfDBvjJ4uRE2b3HzBQZiMnzPaTRe/uPVp2bj4/p8Cx 0oLzpYnPU98cYSc49c0Rwi1uOzenoGXn5t7de8iq7v2TlHCpWH9caB+Mq3/xd9WDX1w54s26 3LH1mzaeuXbtzto1J4qL9hTP3F0wccf7sQ1DB9UM+l31i7+tfm/MFlk6GbaVP79X0x7Nd7bE +mhanyGJP/Mf0Xr+vITen91SMvjue/s8ci+9T/4jWs+779Ueibl+UjL4bjvlksE/jzGpDXlU u/vXKyWZirKO9XHcLhl8t2b//PjYX/e0Pyf2vHfw2I6pXhgMBoOFZr95eeyJ5tZ1B5rDtRPN rb95eayfLPoPGPgHOf0HDPSTRe/uPa5v29A0a0JT0YSmoglnkx+I9R8w0A7v3H/AwCmvvcFt OVs04Sy1f9OsCSSp69s29O7eQ1Z1vz9BCZd5G04I7dXX1w56fuXvnqsaOqhm5IebJk3Ytmb1 ifPnW7fWn508cfvI9za+9eba4cNWDX5h5Yu/q855ba0snYzauN/0vPs3NfM21Pz8Xk3TtLvv 7Xn3b2rmvdtXezR/3oYT8zbkP6L1/Pls+ifMFvLzZCLUDu8OufveIeO4n7zbV3M2Ml+N+03P ZI7CTEXbZztZjPtNz0d+M+TuRAo1P7+X+fnQRzXKPRgMBoNF1Z5+ZdyJ5ta6A83h2vHmtqdf GecnC0/hIvvhieZWO4ve3Xtc3by2cdrYM4VjzxSOPTNtXPLD2DOFYwtyXus/YOAfk3CfC3Je aywce6ZwLPn3TOHYM4XjyOerm9f27t5DVnVvHKeEy/xNJ4Q2bEjN756tGju6flXN8X17Lxxr uHr48OXjx69db/lk394L48bUv/7qmuHDVg9+ceVLz1cPHbKKT2HOkLsTwxx9h206MX9T/iNa T+O9xMZH3juR+3TPxLjJ0zWJHL+fHBj5fn4ynRrjvsS2R94T/tl32KYTuU/3JIkM+z6zPZHp HNoxekuNcV9PY86J+XOG3H3fkFx2h2Hftx2zf5L/COWt89XTfTXn58JMhduTuSc+5D/iVBT5 oE4NBoPBYBGzp18Zd6K5re7AhXCNCBc7i+PNresOXBCaLVy4QSKqx0X8QzoLIlxOFXx0avJH pwo+Ol3w0akC58PpyR9NHp7Tf8DAz1j6Dxg4eXhOYrfJzq9OJX9FhIus6l451uYIlwWbTwlt 0IsrS4r23rr1+Z3bn9++9dnlS7f27m3etPHM2jUn6taenDtn3+s5tcOGrBr04spBz1cPG7Ka /XnBN7WeA0pPLdh8asH7fe95evWCzQXf1DTtvqHjN59a8H5fTdPueXr1gsTnvi+Lf7t6wH3J 3TYnktK+X8Dsed/Q8ZtPvfz9RF7jn+75zfdPLXC2FHyTn16iabZjpUPvIf5sXj3gvuRGJ3f3 h4RLmqaRXOz0k3+6yi6rk83ESfJDthRcGd/vm6g0GAwGg0Xcnhmeu+1g07Slu4T2yrsFigko r7xbIPvhtoNNzwzP9ZNF/wEDL168ePHixf4DBqo3KrLo3b3H0enja3r/vcLe+2E/O1mS8ns/ 7Kf+ydHp43t37yGrusENlHBZWH9aaK/krKlbe/L2rc/b2j7dt+/CRyM3//6tunffWf9ebMM7 v1/35ptrXx1eO3RQzeAXVw56YeUbb9UxP5879B5aKjxWsLC+4JtazwFzyQ6Sz+/3c7TFXJJI v1dcyd7zTG1yS8E3HytYWF874L7EbnnP9Bsw9zS1hc6Izy7vmZ52UnnP9NQeKxD4w3vuuPHN 95M7vz/0HmYHd6aS7ST9RC4Jf2ivFtaffuUxurwwGAwGi7A9Mzx3+6Gm6cs+Fho9F8RN/wED ZT/cfqjpmeG5TBbLPxZa/wEDGxsbGxsbOVVkb5T9cPuhc3YWRLjU9nlodd+Havsm/q3t+1Bt 3161fXrV9n3o/Z/+yE7Tpv+Age//9Ee1fXrV9nlodZ+HVvd5qLZvr9q+vWr7PESMCBdZ1T1/ lBIui7aeEdqoidvfHrHuyOHLN9s+3bjh9BuvrYm9s37c2PoJ47dNGL919Eeb3x6x7pWhq4lw GZO/nfl5+bB7tH7DmQSnfEt74Bfl8s/OT2p/cR+3hbGJzz6gadq3PiS/7Td865nhj5HUpnyL bC8fds9jU1wZcVlP+RbfE0Pyon9S+4v7tG996E7kzMRnH9Aem+Ls/GE/zXFVsL94e/mwe+4b NvzZB771YfLPx4Ylyu6RFAwGg8GiZ8/m5O44fG5m1R6h9R8w8Lic/gMGyn644/C5Z3Ny6SyK qvYIzTML2Q93HD5vZ9G7e4+Goonr+n/XZd9Z1/+7Hxr96Vy4zx8a/UU//O66/t9tKJrYu3sP adUdpoTLkm2NQpu9/MiLz1e/9cbadXUnr127ffr09TVrTlSUHyictjNv/NYxozd/+P6mEW+u HfJSzdDBNXOqjrI/n/ptTbvn2TXslgeerJB//rCfdt+w/G2NSyqG3ZP4ds2T93GJJCz/2QfI 9pze2j3PrllSMeweTdO0fjn2B0GmkuwStubJ+7Rvf+j6SSJB8pNhye22Y87O+c8+kEzQnanM mTVP3pdMPFlplPN0mjAYDAaLvD336vjdxy/NrTsitP4DBh6W03/AQNkPdx+/9Nyr49sti97d e5wonbb5V303/arfpl/12/xU382/cozOov+AgR/9719yWzbbP3mq7+an+m7+VT/ywxOl03p3 7yGruqcOUsJl6fYmmY2dvOPF31U//9uq6dN27tt74cKFm9eu3j53rvXQoUu1q09ML9z15mtr B7+4cvy0jwU/r3j5b+2+jN7Tlm6f9m3tgV9WkG+Fn+t+2UPTNE3r8cS3e9DfJvj2yKalI59I /vXEq9udHf72uTpJEeiMmC2v9uZ/lf/cAy4/k9sTWxxntN7T3Om/2lvTerycT+/G+OZ2pin/ uQe0Hi/nb6dSSKScqBB50WAwGAwWMRv4at7+09cW1p8S2ogxsxRzXEaMmSX74f7T1wa+mtdu WfTu3uP0gpLtL/xi+wtPJu0XyT9/Meapp+wExzz11PYXnnRt+QX1k19sfz6RzukFJb2795BV 3b/TwmXZznMyW7Sl8Z0PNr4ybPWH728qmbWnuvrY5k2NB+MX79z53LKsy5dvvfv2+vdG1S/e 2qRIpB3stX+hR3yeeK1DnYHBYDAYTGi/fX3CobM3Qk/20Nkbv319Qrtl0bt7j6YVC3bnPBuS PUc+NK1Y0Lt7D5kDA+KtjnBZvuu8whZvPTtm0o7fv1U3PndL8azd5vz44kWHKxcemlO8Z9y4 +okzdi/beU6dAgwGg8FgsOW7zv/ujYlHzret3HsxXDtyvu13b0xstyx6d+9xYW3V/neG7H97 yIF3hhx4e8h+294ZvP+dIfvfGbL/7cEHEp8H739n8P63k5/fTpj9K/vDhbVVvbv3kFXdzw5Q wmXFx+c9bfbyho/ytuW8tnbwoJohg1e9+ua6MZN3lq067ue3MBgMBoPBVnx8fth7M+p2HDna fDNcq9txZNh7M9oti598/ZE102dc2bI+XFszfcZPvv6IrOp+tJ8SLlW7m2EwGAwGg2XaSlcf GPbe9OffnBSuDXtveunqA+2WxYziqh8/8HDv7j3CtR8/8PCM4ipZ1fXdR81xWbnnAgwGg8Fg MFjW2uN7qR6Xmr0XYTAYDAaDwbLW/mUPJVxW7bsEg8FgMBgMlrX2GBEumqYJhcsXX1gwGAwG g8FgHWJuZfK93a2JNU+EwuWPX3zxhz/CYDAYDAaDtbf98YsvAguXzz7/4+1P/gCDwWAwGAzW zvbZ538MLFw++ewPrbc+g8FgMBgMBmtn++SzPwQWLnc++cP11k9hMBgMBoPB2tnufBJcuLTd +uzCldsum/tDKiDQ37368YX6t/5O+/rwevIV+ZCOMen/sMj97deH19+mMk3Din7GFMTnr0LJ OpzaEBXn797awH3OgM34scYRoALp45imJ6kdwXSLKXQ+hRK5f6JIJKQag8FgsIhY263PAguX 1pufnbt0y2WlT2hff2WTe7v6K/+mTsT9baqZzvyZ5vxw1yt/pz2QsytVrzJnVL6b3npA+1mh ak/tiZnuz+3lXjv9kLJgRzDEYgqdT6FEgU7mjjoDYTAYrGOs9WZw4XLxyu34sasum/W49uAL 1e7t6q/8mzoR97epZVr/Qk/t8UnUlurXvqb9ODdFrzJndL7+a6bdvE05o/Q9DHoEQyym0PkU ShToZO6oMxAGg8E6xi5euZ2acLnmsuLHtQdfqBZuob6qfu1ribR/nCtIRGHu9J3Uvjb4NTav 4sftTvw+xQFySTRy9MYtL/SkUp5k57glfozLRVhM7fFJlP+DE2MMXxu8JZk4t1vw2pj042QZ 6Sri6+Frg1+jPm8RHYvix7UHH+/zoKb9ODd1xyQHS1Ah8lqqTqNmvI5gsoDCkyfNYrrPEMl5 G/hUV1xB7FXG5w6DwWCdzVIRLpeu3jl04rrLqFZc0x7PJ1sefLFG+OH6ofyf3D9kqygdmdHp /yQvueXx/OuHTlxfNuRBTZGXf6t5/f6ery9jNm59saddHE0j39a8fr8gFzrrhGPsnprWt5iU PVGE/J8ktgQ2d20onHFvFB6L4sc1LXFQUnfMnZGqQkQbH3yxJg0HvI5g8qwTnjwhFFN5hqRw cG1kVxBz1rlyh8FgsM5ml67eCS5crt05fLLFZSU/0B58aZVwS/LDqtfvp2/FfUtE6cjMlf6q 1+/v+fpyWV4Cf3zYqtfv136Sx2zc9lJPQYJ5fbUfTOY20sV0EvHaU7t/yLZgTnK1ser1+wVF FtYD9yvuWPDfpuSY6GAJK0RdSyk74PMIik+e9IrpfYaklixfLZKjJswdBoPBOptduhZcuFy+ dufoqRaXlfxAe3DQauGW5IfVr9+v/WSi4Ld+zJX+6tfv7/l6lSwvgT9+bNugntoPCthcEj7T Cdq70RvFxZzYV77nqZajp1qqhj6oaWymwWpD6YwsX8Gx4GssJcdESQkrxLuWUnPA3xEUnzzp FdP7oKSWrPTUkh9oVyXAYDBYZ7HLKQiXK9c/aTh9w2Wz+2gPDqoVbqE/aPcP3S76uacJ09f6 FNxoOH2jeuiDmiAvbn9/VvATTfvJRCqLpMPU59o37k/sQ+fCFJM45rVnwqqHPhiwWqgUat+4 P/F5+6CeyXwLfuKqEPdn7lgIaiy4Y8KkZBWirqVUHVAdQab4rpMnhGIqz5DUkuVPLclRE+YO g8Fgnc2uXP8ksHC52vLp8cY2l83po3198BrhFuqrNW/2tDu6+80RpSOzOX2oPvKew3Ycb2w7 PvWnyT/fdOeV3y+FXNroZDVN6zOVKU6ffl/ntlO5CItp1wldP8nPTkY/zQ/mJF0bVLXbCfb7 qaDyuWPEHwvq29Qdk5wMggpR1lKaDsiPoLuuqJMnzWIKzxD3dRG89lRXEHOVuc9PGAwG62R2 teXTwMLl2o1PT55t63o2p6/29SFrO9wNWNi29s2e2k8nd7gb6RrOTxgM1iXs2o2UhMuppptd z0r7al8fWtfhbsBCtoInNO2BN1d3tBtpG85PGAzWJSwV4XK99bPT5251PSvtp3196LoOdwMW iu0a+oA94vKzgo73J33D+QmDwbqEXW8NvnJuS+tnZ87fhsFgMBgMBmtna0lBuFSv2QWDwWAw GAzWIRa8xwUAAAAAoIMILFwsAAAAAIAOIhXh0tFiCwAAAABdkby8PAgXAAAAAEQDb+Gyet8l 2iBcAAAAANBREOHCiRMIFwAAAABkIz6Ey/5LtEG4AAAAAKCjSAgXVpxAuAAAAAAgG4FwAQAA AEBkgHABAAAAQGTwFi61+y/RBuECAAAAgI6CCBdOnHDC5TJtEC4AAAAA6Cgo4eKIEwgXAAAA AGQjSeFyWS5cDlymrYsIF62b5t862lnQpdEoOtoXAADIOAnhwooTRrisOXDZNk/hovmjPUuY Alo3bcv28r0HFvux/MIR0C6g3XBfTatWrfriiy8+/fTTnJyc9r/WOsclDwCIEES40OJkjUK4 rFEKF03TDhw4cPv2bVk4x08//bShoeHJJ5/M5huZ1k0737zXp2rJTu2Skyo+0y8uLq6vr89o EXySmieKkvqvhA5B07Rbty7QNmDATy3LKikpyc/PHzFixIABP62vr7W/3bOlJIVrzX+tdo5L HgAQLUIWLopbGGHr1q379u07dOhQyjeyTD/Pke4W2+o2zJLZipoCYhXmqOwRLjk5OTU1NcuX L58+ffrKJFVVVVVVVdXV1VVVVctZVqxYUVhYuGLFisWLF/tsttMXLmHpg+wRLuFKQxlEuBze bRKrLB/d7wf/bFnWoEGDXnrppfnz53/nW/84deLrG2qmkR3GvPGdTAuXdrjkAQCAxlu4rD1w mTa1cBHeub744gvy7x//+Mf169efOXOmpaVlxowZKdzIunXTqmrKmpr30/bRmFcf6qWnWxN2 KbpptiIRWoU5irOs6nHJycmprq6eN29efn7+/Pnzy8vLy8vL586dS/4tKyubO3funCSzZs2a NWvW5MmTy8vLp06d2j7CJZQmPGVPcnJyli9fLnQgJydnzZo1qfmWk5NTWVm5Sc7GjRuXLVuW ZsGJcNlUO31T7fTFFWP+5bH/77PPPrt+/frWrVuPHDmyf//+t9566x//xwOjP3hpccWYzWum f/Dyw5kWLpm+5AEAgIMIF06csMIlfpm2QMKF3Ln+8IfPyb+ff/754sWLLl68aFnWqVOn8vLy gt7I/vzP/7zx3J498cXEdh9YtPvAomXVU77xjZ5h1EZLS0uL1k2rMEfVbZjls9PlxUG/zELh UlFRMWXKlLlz586dO7e0tLS0tJR8Li4uLi0tLS4unjt3LlEtxcXFU6ZMKSsrmzJlSjsIl3TE QSie5OTkrF+/fuzYse6vpk2blo5w2bRpU50XoQgX0pvS7wf/XF9fX1FRUVFRUVlZOX369Bkz ZowcOfKxxx7r94N/riwffXi3+cHQh9pZuIR+yQMAAEdCuLDiJAThYt+/Pv/8888++5T8++mn n8ydW9rS0mJZ1s2bN/fs2TNnzhz/N7Kv3X9PUfGExnN7tuwo37y9bMvOiq275m3fPX/77vnG k4//t//+N6HUCBEuW7aXu3tW3B0t+YUj+v7o0ZSFi7Dsad7Zc3Jyqqqq5s2bV1hYWO+PwsLC srKygoKCTAsXolqqq6vDGj1JWbjMnDmTy5psJ76l4AkRLmVlZUQOlpSU1NXVVVZWzpo1q66u btasWZWVlWEJl+3rZ22qnT76g5f+rfc/PfzQ//sN/Wu02T0uW+qK3hvSfsIlE5c8AAC48RYu dfHLtHkKF+7+9emnn3zyyR3y7yd3bs+aNSvlSSr33vvf4oc21m0sWV4zZUlVwfKVU6trC2vX z1qzofjdD1/67vf+V7du3dKfASMULiPeHfjioF8SG/HuQCJZ0hcuLS6Zkv6sHSJcysvLgwqX yZMnZ1S45OTk1NbWVlNUVlbOmTMnnbY8NeGydu3aRYsWTZgwgd4+bdq0devWVVRURKXH5fBu c+rE14Vmz3FpH+FiX/I1NTWPP/69L3/5ri9/+a5+/XqvWLH8zu1b6VzyAADghggXTpxwwuUK bZ7ChZMsn9y5fef2LfLv7ds3b7a1njxx/MD+vStXVhXPKho6ZMhzT/9vn3exr91/T8OJbYtX TDYX55VWjC43x5qL8+ZXjq9YkDt33pjZZaPMyinLq8pqas3VaxZs2LRs646VOz6uXb12XqC7 pFC4vDjol8LullCEi+1eKLd1WrhU+WDp0qWFhYUVFRWTJk3KnHCx+1rcLFiwIOXmPDUJVVRU xHW62N0tubm5qXlChMvkyZMnTpxYV1c3ZcoUupclrEm7dI+Lbe+88ewTff75//7KX/9ff/1f bPvOt/7xu9/+nw/2+KsUTqqgwoVc8vPnz+vV638UFeXu2bNq8+bFubnvPPzwPy5caN5ouZ7y JQ8AAG6SwoURJ4xwWXfwyrqDV+qS5ilcOMly+/bNWzfbyL8321pbW1uamhobjh4+cuTQx7t2 LF60cNQHb/m8i/3FX9x14tTOKTPeLpozsmDaiCmFb08verewKDal8O2i2R+UmWPnzh9TOm/0 nLJRpRWj55R9VFw6csas90fnDk9fuIx4d2CGhEsLpV1CeRglwoX0oPjvcamoqJg4cWKGhEtO To5pmkLVQigvL09Nu6Tc97Nx48ZFixaNGTOGbMnNzV2/fv2iRYtSllCyHhcyaVdd/zU1NT7z 5XpciD3+L48sX75c+WaPZVmW//d6ggoXcsn/2799b+bMcY2Ne69ebV6/fuGyZcXvvTf8iSf+ pamp8cyZU6ld8gAA4IYIF6JM1iVNIFxs8xQunGS52dba1naD/Nva2nL9+tVrVy9fvXLp4oXz B+MHNm/amDfmXZ93MU3Tjhzb/sHIwb9/9/m/+cpfC/ufZXTr1q1bt26+chEJF3psiLbR418O S7iE1YVO3popKysLNFRUXl4+YcKEjPa4TJkypdRFZWVldXX1kiVLUpvvkvJsm5KSkg0bNhQW Fubk5HzwwQfr1q2rrq6eNGlSCkkRuDkuZF5LUVFRTk6On0MQSLisXDRhqTnOtn96WPdULYQM CZdPPrlz5/atu+760sGD6z7//LNNmxZVVc0pLy+YOTPvS1/6sz17Pj7bePrK5YspXPIAAODG Fi7rZMJl/cErtHkKl9u3bt661XazrdUWKzduXCf/3mi5du3q5SuXL1662HyuqbHp7On9+3bn jnrbv3A53LD9jd//9jvf63X69NHLV09cuHxUbc2Xjpw9Hz95Zm/D8V0Nx/fpf/+gdy7dtApz 1IqaAqFMcds/P/q/Ro9/Oc23isJSLS2scPEzVLR8+XIiXDI6VEQcmzx5slu7lJWVVVdXpzbZ JZ1pwhs2bKiqqho5cuTUqVOXLFmSTndLi7LHpb6+fv78+eT987Kysvr6+uXLl8+ZM6e+vn7O nDnLly8PKly4Hpe/6f5XlmVVVFTk5eXl5eVNmzaNyJQtW7bk5eVZlpWXl7dly5bMCZfbt262 td246667duyoOnFi78qVc01z2owZYxctKv3yl++qXb2q4ejhC83nUrjkAQDADREunDhhhcuh K7R5Cpebba1trTdaW1taWq5dv371Rsu1luS/169duXL54oXmc+eazjSdPd145uSZU8enThoV RLhsGfLKr/7yL//y5s0r9kvRbiOvSe8+sGjHngVbds7buGVu7fpZC5ZM/FrPv/XOpZtGulj6 /uhRP/aLJ/919PiXez3094HqnStXuD0uK1asCDpUVFZWlrmhIto3ol3suR2kG6aysrKysrI9 hQtxpq6ubtGiRWPHjk1TtbSwc1zsaS4Z6nFZtSyf7nH5r3/1lx3b43KzrbXl+rXHH3900qT3 V6+uqKycUVw8fuHC2Xv27HziiX9dvmzpgf17G8+cTOGSBwAANwnhwooTXrhsoCx04TJ3Vn4g 4dKn33eOH49funLi4/2VRJ2QDx/vr6Rt176FO/aYRLWsXldUtarw3fdf+rMv/R/euSR7XPwY kTjpCBfhwFZqSRFIj0tpaWlJScmMGTMKWbv1Yo4AACAASURBVKZOnTpt2jR6y5QpU6ZPn15e Xj5u3Lj2WcfFXjCGaJeioqJ58+al9h5y+kvhrVq1qqysLP0Xs4U9LmvXriXCZerUqURHTp8+ 3e5lsftd0uxx6f3ow5ZlDRo06JlnnrEs69VXXyVdL6SXxe53ybRwmTw5v1evf/joozdKSiYs WjRn06Y6Mj67dMni/fv20MLF/yUPAABuiHDZwIoTRrhsCChciF65fv3q9WtXyHQW265cvnih uan5/NmzjacaT584c/r46VPHZs+c4F+4HDyy+Stf+Upr66Udexbs2GOSf7fvNsm/W3fN2/bx /G0fz9+yc97m7eUb6kvXrC+urp2+ZMXkotkf9v/5v/7FX9zlnUtSuHiu40JUSzo9LpxSCUW7 5OTkLFu2bPbs2WVlZWVlZeXl5WS1XLJsbmlpaTlFWVnZvHnzysrKKioqxo4d2w7CpYVdOZd8 Li0t7SjhMmLEiKlTp44cOTIU4dI+c1zMuWPLSkbOnv4Osf/5Dw90bI9LS8u1q1cvnzhxbPTo Uf369SavQ3//+99/5eVhRLvMLZ196uSxFC55AABw4y1cNh6+SpuncLl69TLRKMQuX7pw8cI5 8u/FC+fONZ0533TmbOPJUycbTp44euL4kdkzAgiX6pqK4cOHXrnSuGlb2catczdunbtxy9z1 9XM2bpm7bvPstRtL1tfPWbuxZNXamavqipavnLqkqmB+ZV5pxZjY+4P+5E8CTM71I1zIxBcy xyUF4SLUKOlrl5ycnKVLl86ePbukpGT27Nljx44dO3bsxIkTp06dOmXKlIKCgsmTJ+fn5+fn 50+cODE3N3f06NFz5swhr9i0j3BpYUMC5eTkzJs3L7WXolObJhzi+8l0shs3bvSc41JfX08+ kE6XsrIysjH9Hhd7jguZ1EJ3ukybNo1sz5BwuXr18pXLF8+cPrlzx/ZlS5eUzpldNHP6rKKZ xcVF3ZIsMCuOHzsc9JIHAAA3RLhw4iQt4XL50oWLF85fvHD+QvO5C81NpIuF/Nt8rrHp7Kmz jSdPnzpGbmHHjx0OJFzK5087fjxes2ZGzZoZVasKl6+cStTJkqqCxcsnE1u4ZOK8hePLzXHF c0bOKH5/etF7Y3Jzfvyz3n/2Z3/qKxeRcLFXn+MWoLMn5wYVLgp1EkqPS0lJSUlJyfjx40tL S1evXr1mzRq7KV29ejWZkzt37txJkybl5+dPnTp16dKlo0ePbjfhwjm8YMGC2bNnt5twaaHk i73R/jM17UKqXSZcwu1xWTxvHN3j8qf/+T91bI8LueTPnzvbcPTwtq2bq6uXL160cMniyuXL lgx/ZZiWfKevaGZhw9GDgS55AABw4y1cNh2+SpuncGk+f/b8uUZipH/lXNNp8m/T2VONZ04Q 1XL82OFjRw8ePXyguDDXv3CZVTzx3PmGyqWT5lfmlZvjyuaPK60YU1oxZnbZqOLSj4hSKSx6 t2Da25MK3hqX9+qY3OFjcocPe+WpL931JZ81onXT8gtHuIWL3ctCd7cQ4TLi3YHpTM4NF9KC FhcXFxcXjx07dtWqVWvXrp08eXJubm5ubi4JHL1kyZLKysqqqqpx48ZNnjy5oKBg+fLlH330 UUcJF1nUw9A9cYsVP18FStyNPcdFMc0lnR6Xv/6v/2fHznGxL/mzjaeONRyOH9i7d8/OfXt2 7du7a/u2zS+++Lzd77L74+2H4nv9X/IAAOCGCBdOnLDC5chV2tTC5dNPP206e/ps46mzjSeb Gk8RpXK28ST598zp42dOHz954uiJY4ePNxw6evjAkUP7Z00LIFzOnju6ftPiydNG5OW/MTYv Z8z44aPGvTJq3Csfjh46cvSw90YOjr3/0u9jz78xYuDLOb8eNvzXw4Y/9cKgX/b+10e+dNef +awRoXAZPf5l4bIu2SxcSkpKxo4dW1tbu379elu4rFixYunSpUuWLFm+fPmqVavy8vKIcFmx YkWHCJecnJyFCxfOmDGj3YSL7E/FV+mQiR6X+XNHl876MEvmuHCXPOlPPX3q2KmTDadONhyM 712/bs1bb75OhMua1dW7d20rmjoOwgUAkDIJ4cKKE0a4bD5ylTa1cLl69eqZ0yfOnDpOZuGR /hXy+czp46dONpw+2UCpln2HD+4rmjrW/11MS4k//dP/7L9GhMJFsQBdFgqXJUuWkLDPo0aN qq2traury83NHTdu3Lhx45YtW7ZkyZIVK1bY20lPwJIlS0aNGtXOwiUnJ4cEqU5ZJWRVj4ss x3DnuFxu3ptVc1zUl/yxhkP79u6qXVVdPnf2rJmFCxdUbK3fOKNgNIQLACBliHDhxAkjXOqP XqVNLVz27dt35tSx0ycbyNxbMip0mnw+2XDy+JGTx48cbzh0vOHQkUP7Dx/ad/DA7hkFY7Lq LkaEC3ldyI9loXApLi6eNWvWzJkzR44cuXLlypUrV45LsmTJkurq6rVr165bt27t2rW5ublk msvixYs7qsclHYmQ5uRcmTNhqZaWDPS47N9eNmdC//EjvjPqjW/HXvqH15/Te/4/f9GBPS6e l3zDkfjuXdvWrqlZuGDesqWVWzavL8zHOi4AgNQhwoUTJ5xwuUabWrgUTptYOmvS3Fn5pUWT SosmlhZNmj1zwpyZExL/zsibPWNCcWFucWFu0dRxRVPHzZgy5rfP/DKr7mJEuIwe/zI9IVdt WSVcWlpa3njjjYkTJ06ZMmXChAkVFRVkRsuKFStWrFhRU1NDJuquXr2avEk0adKkiRMndpRw SZNMCJcQu1tImjU1NWrV4j9WUYuk0/HQoUOeqiVDsYr8XPJFU8dOmzRy4rj38nPfnzpp5MCn n8yqSx4AEC2SwoURJ4xw2XL0Gm0K4dKS6lBOexbYE62b5rOvxba+P3r0/q/d09GOM8gmisr4 4IMPQmytgY3/Q5BOLh14oXWCSx4AEC2IcOHECSNctjZco00tXDoHWjctqHW0ywAAAECXgAgX Tpx0deECAAAAgOzEW7hsO3adNggXAAAAAHQURLhw4oQRLtuPXacNwgUAAAAAHQURLpw4YYTL juPXaYNwAQAAAEBHQYQLJ04Y4bLzxHXaIFwAAAAA0FEQ4cKJE064tNAG4QIAAACAjiIpXBhx wgiXXSdbaINwAQAAAEBHQYQLJ04Y4fLxyRbaIFwAAAAA0FEQ4cKJE0a47D7VQhuECwAAAAA6 CiJcOHHCCJc9p27QBuECAAAAgI6CCBdOnDDCZe/pG7RBuAAAAACgoyDChRMnHsIlDwAAAACg g/AQLvvO3KBt1b5LrRIsAAAAAHR5ZDpByCeffHL27Nnm5uarV69ep2hpaSH/2ty4caO1tfXS pUur9l3ixAkjXPafuUEbhAsAAAAAFLSDcOHECSNcDjS20gbhAgAAAAAF7SBcOHHCCJd4Yytt EC4AAAAAUNAOwoUTJ6xwOdtKW7sIF9PQkugx6Xd6LB7TDZPZ3f0Ten96ix6LW5YVj+l0aprz jZX4yzCo3Znfk7/sBDTDMFzeAgAAAF2N9hAurDhhhMvBplba2q/HJR7T9ZhpUIqBaAbDtL/X kn/FY7q9n2lo9Gdmf0e76LpOfWELDjo/03BS15x06N9y+bplFgAAANDVaAfhQjTJoaY28oER Loea2mhrN+Fi96Y4SiKxSbyzYDdakViWRUkR09BjMUMT7RbTyWZ730SCiUTpz1y+AAAAAAhJ uLS1td26dautrU0oXDhxwgiXw01th5vaDp9rIx/aTbgkxYFpCLtDWGgBkVQeIlWRTIH8n/iL 1zemoRm6rjkaiSgh09BjcSJnaAHlDBWhuwUAAAAIQ7i0trbeunXrG9/4Bq1daOGSECdJY4XL uTba2km4UP0dzkelcKGmuMTtjWrhkpAsro4ZOvdEQvZUGj1mWZaw54ceigIAAAC6LGkKF6Ja /vZv//bhhx/+93//d1u7MMKFFSeMcDlyro229hEu3HRb4ZgOjaNRuFktiqGieGIXI+ZTuFiW aZKtkiEr7mcAAABAVyQd4UJUy3333denT5833nhj3LhxI0eOJNqFFi6cOGGEy9HzbUfPtx1J Wju9VcQqCVso0BNvaZFCd67EYzrdWyObnEvPqeV7SmTChfeHdUc+BQcAAADoOqQjXG7dumUY xmuvvVZUVLRo0aKVK1euW7euurr61q1btHCxxQn5wAmXm7RlXLgwLyhbVOcL+5Yy1RFD70LS iOn8y8/u16GdFE3DES70mBNJn/PH+dMw3e9hY54uAACALk86wqW1tfWWCK7HhRMnjHBpaL7Z cN4xLEAHAAAAAAXpCBefr0M3nL9J6xOXcKEMwgUAAAAACtpDuLDihBEux5pv0gbhAgAAAAAF 7SBcOHEC4QIAAACAFOlg4XL8wk3alMJFkxgAAAAAugrtIFw4cQLhAgAAAIAUgXABAAAAQGQI Klx27ty5cOHCQpbp06eTf21M09y9e7cf4XLr+IVbxy/cJB8gXAAAAACgIKhwWbhwYVNT0+0k ZOGWq1evXr589dKlyxcvXjp/vvn06TN79+6vrKxMCpdbtKU8OTehVOKxuGH6Ei6GZmnEdP4r 03C+iscse01a2fZQUPjD7CP/Nh1Mw8pcsKMQ6y0qfqZPPJZwBkGoAOgKJO4/umUvJhrTk3ck g707mcnPlNn3K+dXVFJdiqDCZerUqbZkaW1ta7lx4/r1lrNnz50+3Xji5OmGhhP79sc3bd56 4MDBgikF3pNzucjRHsLFNExbuMRjRkz37nGJW7pumYZFLztrGpZmJL+POSeEbHuYiPzhMNIQ LjHdav+2uD3qLQxC9DPEeo7HIFwA6BrELV23DJ25/xv0jci0NM0yqQ/2XcveLaY79zGidbLy dptZUhAu9vK4LS03rl27fuXK1RMnTh89evzQ4aMHDhzatn3Xhg31e/fut4ULJ04Y4bKl4Zpt WxuueQkXk5Kf8Vjce6go8VRtUm1D3NIN4a6S7fKU3YrYswUS+EOypjS1I1xMQcpEa8eo3BPX AJUIJ8+FT/a2utdjVEa6KylPFSWvN+KqHnMcMN1KkfJK0QNBP2Hotksh+cmkn7wLJPw0+O2K ehaWV5a+4xeECwCdjpgu6A4h3cnxmKM8rIDCJR7jk43pzA1EmG/nIzXhcvPmzRs3WolquXjx 8tGG4wcPHtm3L/7xx/u2bt25fv3mPXv22cKFEyeMcFm979Lq/Y55DhXFY3FNj8V0W7V4CBf7 yZhWA+J2QrY9VAT+WJahOQKcGSoymZaPayDpdpTeTaa+3Q0ks8V0rqUY9UBArhMV6nozKVVh WsmglcyFqvLKtcU0HH/C8pO58k0nHaI/bB3D3R3E9Swqryx9d+kAAJ0DoYBI3OrZm7ZYuNgb DEblcH+6t0C4hCVcOHGSlnCJ6aZpaSRes7dwMZkutWTQxHCESyo9Ln78iUt6FNgneza8NPOV f+FiWZaRvEgcEeDqUfDoivQSLu5vgwoXi54eJO/5SNFPV0+MPZCn8FMhXPhc5OknvodwAaAL QHeW0A8z4QqXLkLEhEugt4pMg23YyNGllQGNbHt4iP2RCxe6J4ZTJ1zLl7JwsYeumK7LQPWg rreQhAudoN1jEY6fEC4AgMxDjxfT82oDCRfPoaIuQmcWLlzDZjc23HsrBjXlQrg9LGT+GNSZ 6gyFuLpemKEiXZCORWsa1wUgayANnVdCQd/rUdWbRLgkNsYt3dVN5faTcY/ttQrFT674BjVU pBAu4noWlVeWvp1LF7zvANC54YdsXDdkut2he2I8O1TUk3MxVBRl4UKNI5A2w2D/pMUvrU5k 29NF7Y/JdMPY01zo0SgyS9RuaOlJo0yzRyVFj6EqhlS4mWLuevAYgnHtb9cbl69Tn3RtxJwi yPxUOBOKn8IhObvyEz1SXFX7qGd1+oryAgCiDiMgTOm9gtxSnM547lbsvvPYibPdNuJ8Oy+d VLh0argneAAAAKDrAOESMWitDQAAAHQ1IFwAAAAAEBkgXAAAAAAQGSBcAAAAABAZIFwAAAAA EBkgXAAAAAAQGSBcAAAAABAZoidc4rG4YfpbOVcTvDksiDHkWu2NXikuRIT+dDVk9d9ZaYfz KhEwXJJs0PWFAQAZIrHQHLVAnLO8hUEtQ6dbcdN1n3QFohcuQNdFiJRwMQ3TFi7xmBHTvXtc 4pauK6PDUCvrc0u8Z6RBFfmjQBF7KLrI6r+z0g7nFdYkBCACxC1dtwwuBogwVlHyg73kPx2i RLHkfxchWsLFpORnPBb3HiqygwjSD512w+mOGsOcQMqQm6lEhxb5Q9JxglZoTBwf8RLy7NL1 Jp2OwW8X708S1xOdQKZrRWpp+m4/uf11byEiqH+1P3RVsEGaiBv2sXCvqE2HFBCmo643+hko IQ6SidiBGD07jWTnldR/SXnpOAPCcE70OWlSpyh38ivKK643AEBAhEvvk+5PLspKIOHiGWQR S/5nn3CxtHgsrumxmG6rFg/h4gQyFI4WuYQLLRQyIWNl/gSKQsycqSbfBts6w95HvL8duNF0 2jlb0cvSF/pJ5+UEiZQjrn+lP3SUbEFbric+O7GcTCdNuh6E6cjqjQ5vRvaxAyv6ihTtLq/7 vJL4Ly6vyShLTsjawoVzxh3EUXGeCOsNABAUoYAwNOfhh37K8h8d2h1zkdsC4ZKNwiWmm6al WfGYrse8hQsbSdg+Ofz2uCinI6TS4yL3J4BwiVu668S1n/4F6cj2t8dokl4lfh40fcuy2HiB noJPXP8Kf1z1rIrGzI49cZGohenIymXIFZhzXEThoN3llZ5XQv9l5ZUEa7TsHi+Rw0LhIj5P hPUGAAgDurOEfjgMV7h0ESImXAK9VWQabANAPT0Lb8rMDd31Z/oo/Im6cKH29tXjIvitzB+l gPAULn6ESArCxd7NzyQk1XklqkZZvobG9MRwwsWQjHanJlz8CDIAgH+4UPa2iAkkXDyHiroI nVm4cA2A3cZwt3J6O90YGGG/AOLtj6uL3hk1oE5obiam4TWUI95fLhQU6Qv9ZPb3mhtkyepf 7o/qvRhR+0r7Q1/VsnRk9cbtb7g6OUx/rbvqvBKlIPaTFhb2sBrlTCwuuOtZ/oWLvN4AAEHh h2xc16Z9PyHD63ZPjGeHinpyLoaKoixcqE51ci+2xzIMg++H52Yy+h33CYTcH3q+p2BSpMk4 6U7NHjKw/beniWjCSakaO/5iJHa2p4i6R2ecRk7iJ/ckEWjCR+Inan8kWRhsIkI/dffMNclx F9Qbuz/f/SZSCX7KS3cRi/2XlJdOipzGdOXE4k6XXmIkTnmeq88THcIFgDRgBITr7QeDvRs4 nfHcU5/rjuQkznbbiPPtvHRS4QKAZVkZnavRqQdTMMcFAJC1QLiATgj9RBI69FylcGdBdTgZ rTcAAAgFCBcAAAAARAYIFwAAAABEhggJFwAAAAB0dSBcAAAAABAZIFwAAAAAEBkgXAAAAAAQ GaInXPyvxO8swKXzG5mVXpM78Esyu5cDSg+hPwF+m94bqqr1Z32kr6g3GcLoxGn6GRR3udJP P9PnSaaxF6xL7bfhLictg7xz3j55pUD616NfTOZMc9/5wr1e2pW4dyR5AIRESriYVNDguGX4 uVzjlq470XYSWzRmyWSdCjfDhJ5xRe0JAbc/vlGFzgkDj/SV9ab6nWgpMz8hfsIiE/WW8fMk w6SoP3zEcwiRdhNJqZHp65EmtTtG5gjr+qVjzQLgn4gJF/rhw8+VnFA59CKncUs3qPg4BnMR ks9+lg1NJTq0yJ/EwvaG6KGKWoLdMJ0bJXlithfFp39CdwaYFpOFwD1J+hLXxfVGL8xPnpLd kXGYLa7ox3SUbN5PsrOe6O8xuZWz6aR0cRZ0uaT1QJ1XPh9eheeJ9Li40w9ersSRZWOU8N+K TgbZeRKLM+ewn+YjpvPNjLMWn87H1eLqU3Wey7OLmXysDFn9yFCfn/SCe1woKP/nlboIXHlT qAdLIlyE57MsfWk9JAtFh4BQ3Vrl16+wvOrt6HQBqREp4ZKMjen/UcwWJQZ9VzIS0oHofU64 BGrAgiLwJ3lPcQeApKPx8V3T9EiN6cSsYYIcsXcEtxpTpe9GXm/qcMdBe1yEQse+q5pUdvRp QE4MP+US+GMyJ4CfR0DpeSI6LuL0g5ZLHrVbddyF/rDCxf8TryGPW0uSsoWLsD5l57kMZkgr bumiIKP0cZchOz9pH0igOzvfFM4rof/C4xK0Hixlj4swiKYwfel1Grd0Kmiaz/PfvZesvOr7 UuixbEFXIGLChY8krMZknlCdBsOwLOrW0349LkJ/ZDcU09V+sw2SoPtE0rDZuTA/UafvRl5v GRcuwqjRrie/xM3aq1wCf2RBJeVIzxNhACNh+kHLlcyUBFGz6CjfiuMuCaiUEF6BHnYp6UCQ djlI6lN9ngidpI+FZ/1IHZfna7gTSfW8cuUqPS5B68EKLlxkQk2ab7LUQR8ImRSE5fW6L/l8 VACAJmLCJRAmFwiaXD/2hWQy7YHl+hw6Yn+iJlzc9dYxwkXWcAYXLvQzn8+p31L/Re2QOP2g 5UoeUIPMkTKThyNV4UJGEwKc7b6Fi6w+UxAu3Amsrh+p437ypXoCUjuvXLlmSrhwp2g4wsXk VaYaCBfQsXRm4cLdgOj5GYLtrs+hI/ZHfkOhe+bprmxuNzpB+o5g+Giwpem7kdebk3Lc0j3n uHCumnzz6V+4yN6nUJdLmn7S/5CFiyz94OWyTMsgX5mWTt3uVcddLlxicUHlq3EPFXG9F4ke EUl9piBcNDYpU5SvJ7Lzk6k3tjc0hfNK6L/wuHSgcBHWAz20ZPgbJRdev7Lyqu9LkqEi09A0 TXNfi0G3g85JJxUucX5On+Hq/rXHdO3eYHoGWcjDrnJ/7Gl09OQ4u9OF7p6xx2i4sjgXq6SL 3l32xDeS9L39Z+uN+Tbm+C/Nl83a3ijY307ZSPzEnmpqTwfxXy6ZP/SoHzkc6vuf7DyRHRdB +rGUymXPReBu9/6OOy10iOd2F6D/KclczdB+qsprOhsF57kI4hs9yZR7TBefV0Ik56cikUDn lZ987foJWg9MpmxSwvNZlb6oHgL74/LKqTfZkKtiKFbacQXhAlR0UuECAAid9n0dGnR68Do0 SA0IFwCAX/y/0AeAB3gXGqQKhAsAAAAAIgOECwAAAAAiQ4SEiyYxAAAAAHQVIFwAAAAAEBkg XAAAAAAQGSBcAAAAABAZoidc4rG4YXoLF3csIfECVgYV80W2WloYKPyRRi22LCv4OqEEP0Hg LGE9ZJoM13PKpFbPAADgEzuou90W0XdgOtZ6XL7wIPMrKqkuRaSEi2mYtnCJx4yYru5x4Za+ pqOzCqPCMutrBVwN3Q8yf9xehYKnEJHWQ3CChUoIXs9hhWLIaEgHAABQEbd03TJ0fsVtpl1I BvUkH+wY7Aa9rDYVniJ7nv3ak2gJF5OSn/FY3GOoiBcKVFBDaaA1amFQtZJIITq0zB9ZdsKe mMTC8NRS6MIltw0zmHCxSawHT5VOttS6LJqu91KYsnqmk2KD1IjTF+5PcqCeXRJrpsnTUfR4 ucurqn8AALAsKxlpi+sOId268RhzAwwkXOIxPtmYzty4hPl2PiIlXCwtHotreiym26rFQ7jI hiTorjYHTkyEvcC5wh9LrpNkgoYPcMjGrwk8VKTzG2ldYgdRczwx+Z+k2ONC/UmvykquT3X6 sv3tS91K1pW9W4Co1PLyyuofAAAIQgFhULHe6BhtAuFibzCYuyX3p3sLhEs2CpeYbpqWZsVj uh7zI1y4E8K9WjnTQAYRLiH0uLD+BBIuguivXJjZgMtp0/XAxdJLZKcMTx+CcHH1iNAXsCB9 +f6KrqYAwkVe3hSi+wIAujh0Zwn9UBSucOkiREy4BHqryB3/XTiKYdDRX30PFaWA2p+OFS4W VQ9cPJpMCxe7gEEFh2x/CBcAQLbBhRy3RUwg4eI5VNRF6ELCxR5JoYdUmPbJ5IceMzg5l3Mj feHCOuxnsq2sHkhno43d2HOCxmD3SXzlZ7KtpJ4V7/UI05ftz22n7wsKP4VDRcLyQrgAANTw QzauG459XyL3arsnxrNDRT05F0NF0RYu7qEcuoGntycapxQmmQbBvz/OkIdou52OYSYuBicp +g06w3uai7geyFCRIfCTqyKmfkzeeXlFqOqZeyhxvpGkL9uf3u7pp6z+heVV1T8AAFiWxQkI U3rPIbcO52UCbtBHcodRvA4N4RJt4QJShutpAAAAALIHCBfAIH7fCgAAAMgOIFwAAAAAEBkg XAAAAAAQGSBcAAAAABAZIFwAAAAAEBkgXAAAAAAQGSBcAAAAABAZoidc4rG4YfoSLvwSyxq/ 4GBiAZ+YZZjOikCxOLVMWagxIBT+dDg+gzK6602BLOqyIhqzpVw/V+ZSJtZ/a4fzgZAh/wEA 2Ubi/kktEOc0CgZ7dzVdjQW7ArhsAbouQqSEi2mYtnCJx4yY7tnjwsSmSa5q744eTFZBVa/4 HgpCf7IERYgfgrjevPAfyiC7aJfzAQDQhYhbum4ZXCwRYayi5Af7rmvvpl7yv4sQLeFiUvIz Hot7DxURocC0kTK5kNxux6xSBw5MITq02J/kdtm69XrMycu09+S6jojmMMWeCNNJFJnS8h7C RSmzhP7bFeU/BpOsGuknDF0Psn/Sn4TSMqR+ysorOB+C1LMiX6H/aj+dfqAYQg0AkL0Il94n 3avxGB+szb9w8QyyiCX/s0+4WFo8Ftf0WEy3VYu3cOHbBllUvGQ4ZUNPNOGePRApIPCHO/NM dsjGZHSJR5RmkxE9ghg9dDpskEXvoSJ5NEGV/8F7XISCxt7iDh4pVIFCf4gmMCW/cvkhPx8C 1rM6X5mAc+/v5BW3dKgWALIYoYBI3HLjls7GLfIfHdodc5HbAuGSjcIlppumpVnxmK7HfAoX vodD3gAbeuJbMiigFi6h9bgohIjEgNtFLAAAIABJREFUW5KIHcPZ8VMZBJFPh9sSd3oyxCgE n8L/MISLxcZB9OjRkfsTNKqz9HwIVM9e+fqN/s0eoGwfaAMAsNCdJfTDVbjCpYsQMeES9K0i wXCPvIUmUZFJd5xuZGQCitifgMKF7GDolmlYMdP5Od2Dws+cTV+4yHZoF+FCpe7V4xKecJGd D8HqOTPCxY//AIDsgX85IyliAgkXz6GiLkLXEy6u9zjoSU862T9jXfFCf7hZn4Zn+2RaBimC aen08AHbJeDZoBrUFeIegnGjqDep/2EIFyZ9k3+88Nif8icF4SI4H4LXczjChS1X17xbARAV +CEblyKx75/k3mv3xHh2qKgn52KoKPLChVa43Psg9Fd2I0GfIploGKT+SIYeDHYcymnM4pae TIF7+nd2NpyfSNOh37gzfL0RLaw3n/7bF1jQ7dyTCj02LNxf6I9dOeQNMj9De7LzIVA9K/IV +q/ykyqXDuECQBbDCAiTvUFR1z65ip0XoblufsmdSvE6NIRL5IULAJ0VzHEBAHRZIFwAiAz0 kxYAAHRNIFwAAAAAEBkgXAAAAAAQGVIWLjdv3rp581ZbW9uNG63NzRebms43NjadOtV44MAh CBcAAAAAZISUhcvt23e+/a1vPfP006+/9hqxiRMmLFm8+NixkxAuAAAAAMgI6QiXgc89N7uk ZGmStWvX7tixA8IFAAAAAJkiZeGCoSIAAAAAtDcpC5cOGyqKx+KG6Uu4OAt80e+OsquTiRc0 c71r6ryGaoQffFGRL7NPNr0B6+2PvJ7VcOvztgN+6t8/7e9/iGT0PAegi5NYaI5aII6+4pxl 6HQrbjI3T25tT8UCdF2EdIRLuw8VmYZpC5d4zIjp3j0ucUvX+eg5zLLx3ErMov3V0YnDQegn S7Y1JN7+KOo52/BR/5lAGAKiowjxPM+qcgGQLcQtXbcMLiaJMFZR8oO9fjcdYkWx5H8XIWXh 0hFDRaZJyc94LO49VJQI+8IFiDH5sFX0au7u/QOtUppa1Gixn1SnhWEmhIKtykmsIqarwBTk SPwxDOcrPoJXMgUnFA7dWSLprLL9USGpZ/K4oMecujLZqqMrQVVeiZ+y9BWI6599stFdWXDb hf5L93f1SAlDMWTkOMorQXCiJhOxA1XSqQUrl9sfskVPdHqZrpXRZfUPQJYjXHqfdMfGY8yN MZBw8QyyiCX/1cKlY4aK4rG4psdiuq1aPISL/eTHRS5kQkKYTEgawf6ZX7FUmC8dh4gemmEa GLZXg77j2xcDaWxM12/pWDxkH5IdHcyPXCdqf6TI6znRNif1Fh2nUBh0UFhemZ/q9IUI61/W A6HumVD7z+0v7pnI8HFUID7PTf7OKPbBq1xif+xAlck7tR1jsj16OgHIDEIBkbiFxi2dnaLg Pzq0O+YitwXCxVO4vPfuu0sWL65LsnXr1n379mVWuMR007Q0Kx7T9Zi3cDGZLjXm5BA2qLL9 KTwbgFR6XIT5untfWE1jByB0eh0lwQ5l0YbFXSauJ2b7CUDhj2e5+D/lwZmFz/2C8sr89Epf 7Sd33A1h4vLtCv+F+4uFS0aPoz+489zxk63YAOWS+WOfSMmjQBdTUc8ARAu6s4TuJglXuHQR UhYuEXiryDTYGyX9uC8awpDuz2KEfQ8V56sUCvbQBtflSD/RptjgybanLVy4jpNAwkVcXoUD QYSLr+NuSgSra7vHwKLp3TOR2ePoG0MkBKWTV/yUSyaw5MJFlj4AkYOLcm+LmEDCxXOoqIuQ snCJwJL/7uEe+6mRa+9lw0NmcgemVyNseavI1zmfXV3lhu7qbtGpzz6e1Ln3X+zrR/ZejNof AZJ65tzgkDX8fHnV7+8EES6y+meykwxR8b1KIv8V+ztfma4eCCtTx1GG+jyP6ZbpGjMKUC6Z P3Lhoq5nALIZfsjGpUjo65TuifHsUFFPzsVQUZSFC9UvTe59dp9zzBRNHlTsH2f6qzUt1BdP lPnSkzQ1g59Wws3wsthRKjKLMzGZyy5mMkG7/aAfAujHXO7hwBF8cn8URePSN/xt5y5Id3ll fsrSD1r/4kqQVY7cf9n+XJU6c1gzfRwleJznrjtv0HIJfmLXv5H4iT2l2jCDOQ9AVsEICNes c/ta4zv7uVuc60p3Eme7bcT5dl46qXABAIRLoGlDAACQMSBcAAAq6DlAnu9nAQBApoFwAQAA AEBkgHABAAAAQGSIkHABAAAAQFcHwgUAAAAAkQHCBQAAAACRAcIFAAAAAJEhesJFvCK4CGdB LUmIY3pRIGfVL53aJ9RVxsX+BEcRhdgKvl5qUDKVvuS4dDU8z8Nw699endbgFp1LRqmUbRd4 6+m/nzARAADgRaSEi0kFj41bhp/bd9zSdcs02GVAXWGKbe1iS6JMRa4S+pNaSuqYOOkhDUmT USTHpRMQqD5TOA9TPF50hRORQS0lruvJEATC7fKI2Qr/ZbFLAQDAPxETLqolyUXYwfmYNl4S /I8OkuLZWqQSBVrkD1m8ORbjyyXb7nbb7ZLbDWcNMZ2PI8P/RL5UvyJ9enV2ugfLMPjtKmRB GWmXki2lXSI9RhVEl+4v81NczySFZH+Dya3YLUpfWl55fcqQnYfi+g+ePl0bzs5xSzeSAsjP Z5fPbuEiuI7Q6QIASJtICZdkbEwu2J4CJ2AhfbvkArax0d0MH/ojZYT+kLaTbudM5fbEBkmP i3s7/dRLGj9buNDxd7gYN7LmTxhEkA77zLXlpuRXAiTHhT7c5AQQeCIJgkjvL/NTXM92gMNk 348w+B/nj6y8KfS4yM5DYU2m1uPChL0kURVNS48l+kVosSLYTiXCCUS1/0a40b4AAF2PiAkX 52bq57nNZLq4mdDhEuGiJaO7+ek7CdzjIvGHEw10Ayncbv/ps2EzZHXFPqynKFxcYYTtgTBZ NGMpwuPi6lHQ2FhlfCRn2f5yP8X1LItaLPdHUd6gwkVxHoYmXDgpnKwfO3YmI1zc21nomTdq /7naBgCAoERMuASCjrGiaez8CeVQkZWZSR4yf7gOJOGTvZUB4UI/+3KJZ4NwsTOSCi9q6I3+ oXh/pXAR1LNMuMj9CVG4KM7DTAsXux+OEy78dhcG1fOk8B/CBQCQJp1ZuBiu+Q2JGybXzkme mEOfnCvzhwQi97/dSnrrf6iI3mJobMNsUcMiVF70PBh1vlzDL2zAUhAu9nFRv0djuIYOZfvL /BTXs1y4yNJXCxdZfXqmw52HMuHiP30bwVARm6awp4o+P4WTcNX+Y6gIAJAmnVS4UP359Nue mmbFTPFkRveLnYYW3uvQCn/iVkxnJnXS83aF2w3Wf7uhkm232Emp7sm29qxSpr0RjcuI0xcN OdmJ29NEPIbSlJNMaf/dQsotMcX7S4bGBPVs72kknNdjzgiIMH2P8orqU1wN8vNQcXz9p8/V UqISuPNTNBzGbedPOfkL0sx1hMm5AIC06aTCJVLI5hr7n4MM0qHr1nMGuhU9MsTr0ACAtIFw 6WCcZ3fZi7t4Qs0kXbye21W0obsFABAGEC4AAAAAiAwQLgAAAACIDBAuAAAAAIgMEC4AAAAA iAwQLgAAAACIDBAuAAAAAIgM0RMu3OL0UlyLaJmWawUt17pwzsuxhmql+VQQ+kOhXh/WTdD9 BR4l1wrzTser3jz9CXM1P4r0jxeJw6B4JdhdLnW9pX9cAAAAKIiUcDGpIL1xywi0hDy1FLps 6X16MXXTyEBDK/EnRFKIWeMrbrNlWYoQCv4IWQgqj1cg31Jby8R/vQEAAAiRiAkXfg1yNZKg fVykaDqqrf+mKM3o0HR2iid4JzJAzNlBvL9iyXxT5aH/UivqTZw45ZJhUsKFdlW27J4PVSf2 PHg9xHQmEAQdeFJxWN25y/bnTxWveiCVYAcZyITABQCA6BIp4ULaAFdQPSnciub2n1TcODtE MCGz66jK/CFOiYIX0qFk3M2h3yjBprPRHZs3gFyT15swHTqcHj1URB8+ckDt7UxwHx+HQLHu sP96IIkkXOJiJgcJZinb7gxuxi2dqhNZPRBXnUKZWCYfAAAcIiZc+Mi9auRCIdFmyNPhGxLh Dun1uHgIF9Y3YXPoV7hIggsq0pGhqDc+HVNSHFEAP2EUYrc2UsAdr0D1wIk5bhJV+sKFzt0p kaweCH6CaQMAQJckYsIlGAplYCa64hXPskboXfRKpaIWLu6WzL9wMdjhj3SEi6Le/AoX2WSX 9ISLxR6vQPXAdeBlRLhwqoX4o1DGEC4AACChCwkXTogYrtkDBvdAHHrgXKU/wqEieljBp3BJ /MSkejLYSRVpCRdRvcnSoQtIT56VvXfDCQjPybyK4xWoHmI6P+8k3KEiTrUYXvVA3IZwAQAA IZ1XuCgmaZLvRQ1tsMm/IfljyIYMqJ/olHCR7m8x80/tjfSolmE4WavSUZTDq96cdOjJ1AY/ zUVdXvfxcqM6Xr7rgbwOTf7k0pGVK+h202C3u+bhqtPBBBcAAKDpvMKlc4GXbwEAAAALwiXL yexbTgAAAEDUgHABAAAAQGSAcAEAAABAZIBwAQAAAEBkgHABAAAAQGSAcAEAAABAZIBwAQAA AEBkiJ5wUa/Tz+G8TmwkVyw1pauBhYgg386LOopyUFTryQIAAOjyREq4mJZpC5e4ZXg1b/Si bfSS89z20JtJWb6dm6DBGrEeLAAAgBSImHAJtCS/r2gyXjGJUogCLcyXpEP6isga8GQf0jcT i4nKRS+B71onngQ79LNUv3R/SfoWu/CdLlminsvUHTNSWF5F6ANFz40730T6htQfAAAAnZJI CRfSXOl8ND4FwpVn6SY2pmckFowsXycvk/GBExNmcjsdzVhjg0U7iZs+iiDaX5a+rMeICfRo 8lrHLddk5bWUPS7CYJPCfIl2MSW/AgAA0CmJmHBJNHhxphvAD1zD7LPvxEqpx0WRr0y40MrD HgvTXfnSwRTdPqiDLwpDFsv2N9wbXV1TpsHIx0wJF3m+ivQBAAB0ViImXNLBcD+dm+0xxEDn KxMunAJIRG9WiLOg7bRQ6PgRf3YPB4QLAACALKAzCxeDmy+SbP/opjEeszTlHJeM5Bu3dI0d KmLnkZDmWDVxOAzhIkufEVKmUz+cwDJ8DBUJy8sk5dKOwqEiYb4QLgAA0AXp5MJFMJnXnuFL Td0I98Ufcb4WMzpDZuPa83PpSaZcA+8eyuHS95zgothfmL5wI+c/nY50iEpSXsti5lkLx6ek k4iT+dpDeIbppAbtAgAAnZ7OLFyigv+5xgAAAEAXB8KlgxG+fwQAAAAAIRAuAAAAAIgMEC4A AAAAiAwREi6axAAAAADQVYBwAQAAAEBkgHABAAAAQGSAcAEAAABAZIiecInH4obpQ7iYvlZR c6/qFotTvw1xUV2ZP5lGUt7OSsaPYxLVusYAAODCNBIrX9jrdjnLYRjJb8kObHvBrflJL6LR NZcAi5RwMQ3TFi7xmBHTPXtcuHg6ya1US2YvOe9aMz4T68KJ/ck0wvK2C4qYRJmiXY4jAAAE Jm7pumVwMUw0JnSJ3R6RD6aRuHvbu8V0535OtE7nfhYVEi3hYlLyMx6Lew8VeQsXOzhOMqhQ THdW4lecEKlFjZb640qBpE+HAhB3GvkMlOguryQdouVjVOmYuEXyuAR6zKkT0xL09NBL9ZPP 5KpjYja50wlaXsVxDOK/ov7t3ehEVMeL7geK8T8EAHQ+SCQZ7mZPumm5AHmBhEs8xidr3+gU +XY+IiVcLC0ei2t6LKbbqiUE4ZL4M27pumVZlqEnwvj5Cp4cEJk/9nkb052TmLSFfERrtguB nMdeuYrKK0+HNOS0aLAbfqGfiTRtVWEyXZpu8acKjihKJ1h5FccxoP+y+rfkW2THK5GXK9gk AKBTIhQQifi79E1VJlzsDQZz9+b+dG+BcMlG4RLTTdPSrHhM12MhCxfSwpmWHku0lGrhEmaP iyR4obiBd/VkeHcVyoSaJB2uUXfckPjJuMeSgnDh0wleXulxDOi/Ovq0ULiIj5eu+hUAoCtA d5bQ3SThCpcuQsSES9C3imih4LQrkqETEqWZdMfpRmLEIVyE/hiayEl5wxm4K0hSXlk63KQQ Tz8597ik0hUuwcsrO45B/c+EcJFVFACgc+PMqGXn1QYSLp5DRV0ECBfLoHoadN2Zn5GJs0Hg D92wxS3ds8clhfdZJOWVpUM6G+k/E3Ui8ZNzj0sqUV7qguQm2XgKl6DlFR/H4P6HI1xYIdg1 7zIAdDX4IRuXIrH1imkwPTGeHSrqybkYKoq4cJG9TiaZNGqxp0j4DYz89TZ61InM7kxMwrL3 Sf6Wm8fqa+hEXl5ZOqTHwj3+JfTTomaeCodgBE5SLtGTVRXpBCiv/DgG8l9R/9z+GjWZV3y8 qPLqEC4AdAEYAWHyNy77HkLuBs6L0Fw3v+vO7yTOdtuI8+28dF7hAlIF7w9nDsxxAQCANIFw AQy0lgdhgVoFAICwgHABAAAAQGSAcAEAAABAZIBwAQAAAEBkgHABAAAAQGSAcAEAAABAZEhN uLS1tbW03Lhy5eqlS5cvXLh4+HDDgQOH9uzZv3Pn7vot2+vWbYRwAQAAAED4pCBcbt68SVTL xYuXmpsvnjvXfODAwT179u3ctXvr1h0bN21ZW7chg8IlHosbprdwEcYSohcwtRf8MZKh9bj1 mMNF7U8KmNQacfRabYrt6a8gIqi3UNMXkOHjkjJBy5up+gEARITEzZlaII6+ozq3bt2Kyxcs tZQL0HURggqXefPmNTU13bhx49q161euXLl8+cqlS5dPnDjZ0HD8aMOxI0eOHjp0JB4/tH37 zrKysrCFi2mYtnCJx4yYrhYu9qKEXJBhehEwstwy9xMrA82Mwp+UkmMj4HhuDwNZvWWajB6X cBHGZgIAAMtK3J8N9s4vjlWU/GCvA27vpl7yv4sQVLhs3bp13rx5BVMK1FZWVlZbWxu6cDEp +RmPxX0NFdlCwUa2eimzPe4RZDG16NBCf4h81mNOmonvTXHKdJ8K3Qkh224nKwwDZO/sKaQU 9SZL317Z2l7an+xMhxTwvOqkx4WOZuDq/hGWiw4dwMUN8e+nuLzy0AqK+nH7k0L9AACyDeHS ++S5Kx7jg8f5Fy6eQRax5L9QuJw9e7a5ufnq1avXKVpaWsi/Njdu3GhtbQ1/qCgei2t6LKbb qiUV4WJJVjKlG8iYLvhVKAj9SWiU5KCVHQzS3pH3J3iPi1t20DF9SHvp2QOkWAHWnb7jMxtM keTFB1yUIzsutCIh17O6XMwVbjr7p+an0HNFj4uwfoT+BK0fAEC2IRQQiQD1cUtn4xb5jw7t jrnIbYFwyUbhEtNN09KseEzXY+kIFxu6waM7Ufy0pmH1uFiWJLoy+xAfunAx0hjroetNnD7r Cf2tOuqyOC93Dbt6OOwLXlwuVxdaIlJ3qn6mK1xk/gSvHwBA9kN3ltAPLeEKly5CxIRLCm8V qYWLZVmG++nWdfaEiH/hYmhMj0JWCReLqjdx+pwnZlrCRXhcZP6nI1z8+wnhAgDwDxfi3hYx gYSL51BRF6ErChdaENDtB/e0nSEZ61e40A1q3NIz0OPCTXQ1NG+FJ6w3Wfrc5JIQhAt7XGQT dWXl4ibxGNRQUQp+yoRLIinXDUhdP7Q/EC4ARB1+yMZ1Q7DvS+RFB7snxrNDRT05F0NFkRcu 3GgOPaZIb6dbGnr2BjkDQsSnP+5JnfZsTWdWOf2T5Eks286lT2dN/8RzTo+43hTpU6M5elIQ 2IUyTKfOVW2z8rhwRfYol2zoLaCfivqk51PLjq+wfmx/AtcPACD7YASEKb0n2K+acjdti/2h +5mH67YR59t56czCBWQPUZlkGhU/AQCgywLhAjKI4i2krCIqfgIAAIBwAQAAAEBkgHABAAAA QGSIkHABAAAAQFcHwgUAAAAAkQHCBQAAAACRAcIFAAAAAJEhesKFX/xeCLW0l8n+GTP5GDeJ ADfsomp01ENnAbHQ35VV+JltSwi5YgNltN7coapl6+QGgo4aTU4kQcwp3eO4BCqXrH4U9WbR aw8Kt9j+ZP7l7US06lTjXxguJ0M5jplFvvw0ACAbiJRwMS3TFi5xy/C6/XExa5w4Mia1QKHJ Nk70cvJ03Jm4petONJlwkfoZnHR+60271ZuZkXgL7qjR9mK1TOzG5OFQHRf/5ZLVj7zeyBLg tp/CEATtGVnN16OCnDRDYnUIngHOAAAdSMSEi3DJeRnM3YeO+WLyYav0WCL4TsxuVAymoUrc uwOGMrZN/Supn3Qnh+ux1d6e6Jxw9YjQd156CXxuXXw95vjsca/OZL3RxHTGeds9OpGE8jAE 5RLjCq7EF8TVxEqPS6ByyepHWW9u3yxKQLgDmogxxWeg4rgLziuSb4ztgvIsMnUSGq5OI77S JH5aVKddLOZ8K/XfnQ7xJNm/ZbpWXqcXHmR6WeSdLobPSgAAZIxICZdkbEz3OIIYqq1iHo65 B3ryJ9nZtPRYosWiGxL7c0YeHyV+0sUkBbf34XoO6J+4b6lM+FCT1UD0CIXp9ZTZXvVmiBoG 92L8pOx8ZG+587Id3OMyyS8k50+gcsnqR1lvlt1mU+kT4WL4D11kMgeCObii4y47r7jPnrkb XBwrtooEKUj8dD7HLZ0rtfC8FaZjByhN9hHa+o/2hO7lcpeC2w7hAkDHEjHh4tz0/TWETm8E 11rLGmDqViscWvLsQ06hx0Xsp6sHxZlWIi+7QLi4eho4DRegLyST9cY47Fu4BIiirBQuwh4X y8f5Q5dLHExRVj+KeqOzMpgeF9KH4TeQvSyopKQ2ZOdVWvXsulQFwkXoJ/tD/ldCN9TpJI8a XRzDdXHZ8FIPAJA1REy4BMZMdCnzj5uSIQ/yLdk3Rs85oBukTMwtEPkpa0iyRLhkqt4yJFzk YlfViyA6LsHKJasfeb1x0EMtdG+EZ6tK9xm4L4HsES5iP11i0VO4eKQjEi50glyPC4QLAFlL Zxcuwq5dtgE22CdjG9lwQIYmwLr9lL1/wW03NKY9S9y7TSc1bmTNULQHatqr3vwPFQVoUOX1 xqUsHLJhtgQql6x+5PVGN5nc8A1dXm/BxPbeeQoXRf0EqmeDmzSjFi5yP+nzlu9kcrshS0cu XJjrwlWfIQ0VmYamaZpbAgXdDgBw6PzCRXCjdE9i5d5DFg3TkLuYwf4ZIsLnfnpSrXhSoatB EnR9S4YMDHc9qPxrv3rjHnaFQzD2kJw9fcHnkBxXXuHQHl0T/DtHgcrls37i/NRX9xvX7ok4 7ukjfOZU0cgsZlJkxXFX1E+AeqYn0RuOn+KhNLmfdLXolHCR+S9Ix55TbCS8sqf0khE32UEP b3IuhAsA4dP5hQuIHpl5HRpEFz+TgkMEr0MDkM1AuIBsxO+LY6BTQ7+u3H5gAToAshsIFwAA AABEBggXAAAAAEQGCBcAAAAARAYIFwAAAABEBggXAAAAAEQGCBcAAAAARIboCRfxit0c3Ipe 7Dpg3MJTYa4Pocw328hgPWQ97tetZesUB4KOrkxOVMECd7rHeeJefa4dsJdlSw33anih1GdW IQz1ID6+wUmz/qmE+EUO6SSdS95wFoDOuvsAXkcHXkRKuJhUcNe4ZXguPS5fmt1gV6ENV1WE GCIgQ+EFbDJaD9lLZha4c0dXFoQUoG7KqvMkbuk6H5I60/h6JJCTkcDp2Ycw9ITw+CoQXtdp 1r8DfXpToT8U0bCz7T6ABQCBmogJF36tdCXM2W/ycVjsb9T3ixSiPUvzpR+GXI+n9nYnIrG/ pdm5OAD2ouZ+FiYX1oMiHWG+Yv+V5aUXFqNv9N7b0yuv/UO6Mu2f04c1oTwMcXkFuGIP0UkJ o08rzs/EsfAZSYq6LrigS7L6ER6veIxaI99PZVLH1zCZYJDiy0Tip0VHTog530r9d6dDPNGT 6/GbfBFk51UKKISLL+kmv66l9S+/jsQIg6EqVx/2fz9M5CC83oNep4pyodMFKImUcCH3RN33 MwHVlnAPr5l9wpDkS2dECmLvwz2p0z9x30OYgHNcVFuTuguY3jcgaT2I0pHlK/NfVl7Zk59s e4jldZfaRtggCZ9WxchFhjvMUPIL6fkpC1Qpy5o+iILYVWz9yI4X99lPMEXbZ/dQkSAFiZ/O 57ilc5pGeHyF6diBFZN9DHYDrOhpSAHZeeJXVSTdFp6BwvqXXUdSuA5F6k/ZSsSB7oeK6z3Q daoulyzIJQBW5ISLE1nX3z3C6b1wXRU+u09S6HER5ysKsOfZOAlucK4ne6bNCxTtWVEPwui7 knzF/svLy+XrDsXMP5aFV17bsfCjTyuFi+yJXHx+Ui2Nrz5zSRBNmVey8y2t8rouMYFwEfrJ /pD/ldANdTquKNCW/HxLgXR7XCzL8jNUZBdceR2JkQsXOi9uqMj/zU16vQe6Tr3KxUtwACgi JlwCYya6KLlrQPjMHSaifGX3tY4VLuJ6SF+4+O4tED9B2tujIlzkYlrVeyE6T4STQBXQz6b8 qZ5NwkXsp0u0eQoXj3REwoVOMBM9LkFPwgDCJYXJQ5KhIg6DfZDwfz8MR7h4lQvCBSjo7MJF EoY+48JFlK/sPQtuu6ExveiJi5+aZMf15RqK+74PJ/0KF3m+Mv9l5eXHpIwg29Mrr+1h+MJF Xg9cylyj5T5Pgk3udvXqeQoXhZ+ByktXo3sIhq9PuZ/cJAnvnj9hOnLhIjuvEn/6kIaqcnkd XyHC61pW/4Hfz2LLaB8mZvCF1RmB7oey8yfodaouF4aKgILOL1zcNxp6Blnmrg3hgw735qFw 0qtgjoJisp4m7g/n0xEhqwdpOvIhCZn/wvL6qYRMlJf2iukJE3VZ20OE9rQJn0OEnD/CoUba U/6dFPaIGOyfQugsyGxikrWifhR+BigvPVnecKa5COtT4Sddap0SLjL/BenYc1qNhFf2VFDD lJ9Xyc4tnzcBv69D+xEBrus9CylsAAAgAElEQVRaXf+KIvDIJ/9y9SmcUeuzKsTXe/DrVHXJ Y3IukNP5hQsAPJl5HRqkTwrDLunAd/CA7ACvQwM1EC6gK5INi1UAG9nbLplFMtsJdDDobgFe QLgAAAAAIDJAuAAAAAAgMkC4AAAAACAyQLgAAAAAIDJAuAAAAAAgMkC4AAAAACAyRE+4+Ar+ HmeDrLLrenGrHpGFHOzVpegopqG9nKn0J9sQ1k9nJeXjHng908ykY3BnUTKanWw7wV1SZot9 fuKtVABA9hEp4WJSQV/jlhEwGBi9FLcwGiofQTrsu3awpdyVpPNbP2Q2enaWEeJxz/RxEUBE BhWUUdcpcezeLo/ITT8S0BGAAQAgq4iYcBEuWS2DWX7R5ONrOAtVJ+/XgRqwFKJGS/2hl8rW +Z/Y251Iwv6W0OaW0qd7FDwbV2H9KNIR5iv2X1leeiEyehEq7+1plFd43BMLxhuC9O1k+Vg8 8uMiRJiOIl9JKpZuUFHTPT+7fHALl5gO1QIAyF4iJVyS0dj99gFQgcT4xqkjelxk/tDFocPN 00+9pD2jf+JuhJj1y7kouPRIgendpkp7XETpyPKV+S8rL92IynoF6O1hlVd23InPdigZPzGB U+hxEaasyNf1e0s3EjqYKGNarAi2JzFcwpEIF6OzDw4CAKJOxISLc1P2pyqcXgp2fzruF90o ZrTHReyP60ndbrQUDggayOBh5RUI60ecjjxfsf/y8nL5ClpZent45VUIF0W05IwKlwBRmpP1 YMc4ZISLezsLPcOGjkoI7QIAyFoiJlwCYyaGDLhnbmEYd6YBy1C8DJE/MoHSscJF3ACnL1x8 dmWZkpmh9vYMCRfquEdLuJAZYJZLuPDbXQiFWgdM1gEAAH90duGSfFg3XRuF4/3M0EZmhvnd /sjeK+G2GxrTriTaWtNJjRtBM9ihk0wJF3m+Mv9l5eXHpIwg29Mor+y4pyZc3MfFM/dwhAvl g6nYblkxXTwJl8uXPf9NQ9M0zT3mFnQ7AACkS+cXLu6GgZ7Ryc2VoSeTZghZgyccOqG3M42A KRpSYUdh7P3pcRY/k0Zl9SNNR5Kvwn9hef1UQibKa4mOuz0UaJhObZMDx6XPuCQ8LhKE6Sjy FcC9Vy8ahuO2m1zW8hekDY2+CiBcAADZQucXLgAAAADoNEC4AAAAACAyQLgAAAAAIDJAuAAA AAAgMkC4AAAAACAyQLgAAAAAIDJAuAAAAAAgMkC4AAAAACAyRE+4uNfvF8CtuEWv0xXjl/yi cdY6MxIrsdpLk9HRhkNbnk7hp58oku0LtxBc5w5nk/Jxl60LnIID6aRjcGdRMuqkbDvBXVJm i31+Zmx5RgAA8CRSwsVMLC1qmJYVtwyv2zoXE4cOv8LF1SPIohBnOmq0ws+gZDrEjDRqdGck xOPeAaF/iMigopHrOiWO3dvlEbnpRwU6RAAAAHQIERMu/FrmSkxDGvPFU7hw6WQ0arTUT3oF d53/ib3diTgtX+qe7izhltKnexT8rFLvLPSfbM8U6QjzFfuvLK+Tjs4Ev/TenkZ5hcc9EULZ EKRvJ8scbuVxESJMR5GvJBVLN5i4RR6fXT64hUtMh2oBAHQ8kRIu5Pat+37Wp+LMcY2QULhY bEMo2zn0HheZn3QxScHtfZiggBrzE3cjFNOpJpCLukyPFJjebaq0x0WUjixfmf+y8sp6wmTb wyqv7LgTn02XD26vbMKKGq3I1/V7SzcSOpgoYyb4ont7EsN1/hPhYnT2wUEAQFSImHBxbr7+ 1IPTG+HqsVBLH04oZLTHReynKGCe6eWAoIF0RQlmihM8arS4UO505PmK/ZeXl8tX0MrS28Mr r0K4pBA1OhThkkLUaDtWIhc1mt/OQs+wSXT2mKwiBACADiJiwiUwZmJogHu2ptsk2Wxfu3eB acB8a6b0/ZQJlI4VLuIGOH3h4rMry5TMDLW3Z0i4UMc9WsKFzAyz/v/2zlhnctzK9/UkRm8w wADCAk42c9DpPgCjDdyRH8CAg4m6IkfzDh05MLHJDTeaFzCwuEC9gfdiDRv2zHRPtyfTDaSi DslzKFIl1Ves7/dDodGfSkUeHlLiXyTFkwmX9HiGKtReYLEOAEDMswuX60N5crdVhYs7xR2V nM7Q/r8vuZ3WeyXJcXeK+pW5CH5JLZlZc/HUyVHCxc7Xst8qbzon5VqO31Beq963CZe8XlZz 30e4CBt84fg4ngd9EW6Sb9z+vTudTqdc+bceBwCo5fmFS9oBeGUqJwgXa/GvXEx6EFaHp06d yONRJ+C1KZV4Fiac7zQnFJCZRsrASsfIt2C/Wt4aJxxR3lGr9zAV6Pzi7anikvQjk9R6MVDT KeSrkLxXr03DJcd9krX9grQ7yasA4QIA9+b5hQsAAAA8DQgXAAAA6AaECwAAAHQDwgUAAAC6 AeECAAAA3YBwAQAAgG5AuAAAAEA3IFwAAACgG/oTLtYO/RHJzlrZBlx5dEAlxtAwjtctufRo grdj21kVRfKOWH54Gb9VUxuP81lw93Xysgegm3co3rOdHBReAwA6pyvh4uctRJ0fx8vo1vZu T2LfLFuen5Zty70bh+uW59HeteGmaZ+/F7qdmzgwlMzj+W2ddH/6V0FNyKdd2okenXvXdjLF rwYAkHQmXPRRE4Porhdiu1zGwUVxW87ZjTW69dvnq2yIDq3bOcYDRVl063B8iSxtb2kvd8dP tsyfgjuu70a/q98a7LmWa6ru+avq2OBWPISkRhZ7hqqn/Nz+6chZ1P5ksHW84AfTHqs9iOPO rwmX9nZipqQFqdj5+mLQBQAyuhIuU781VI//i3hyS1TF6aAfh/OsGOSNVe8VjPN3Q7UznuaY Ch7OiYL/naKf5LadB9HBJNGV5ci8Lz7d7ue3ZnvigIL1/k9DQvpIJIXC6iMHNpb9U68/p3oZ h1jTqMfVdCx7rPYgg4NWThU1txM7nbTq976+3ONNmwLAy9KZcFmezKqfuefRiOTGKm7xNU+E 6vkqG0ZcTDuzdOZIeHbZFduyaMBSGzVES97Lb5vsWcrVZHAiXOygjy5zcilZw/5kgCcsxtKP F/2g2GO1h8QhdZdGcztZYxFSe19f6bAZALx6OhMuzfh56iEKWezmr8KDrzIHP66fvye5nbZA eVnhcqvfttlzPd7g/Ey4yGd3c4n36khDUbjInl4KF+V4pVAQ9uj1/hjCZQzjW3tfXwgXAEh4 duFyfXiNZs3jG7R1Y7U62oMWwKZ2TgsVtV48Oe7E4MHSR/po+YXsgVw8NdMsXK5s9ts2e87D 6OutnVJO6j0ezVKcNlat57XsPw+R6JHltY5b6aj2WO1BFrNmqmvc0E40okmcUN17X19MFQFA wvMLl/RdBrlGUv6pTfF4+/zdtYv6PCoXS+brWPMpD7n+NOqztSkSFxd2ZYHLjn7bZo+PC1VB PkezJO6WLCwn13jjFAsg55bjoTat44V0LHv0r+SidVe3zKWlnVgk9ZU2jF2uLxbnAkDG8wsX eBIah1umn9zzdWhrzXjtWnLI4HVoAMhBuMCj413DMEDC3USD8n5N8Tisw3ALAGggXAAAAKAb EC4AAADQDQgXAAAA6AaECwAAAHQDwgUAAAC6AeECAAAA3dCfcDE3a9dYXkZ1806gLux2NXGN 6qfEGCqevy+5nQ+LtX9rTnBpfr4eb0/jMetrlde2d0tlcMdbKe5kuFs74TVsgMemK+HiRy9C vbi17lOPsjvd7OQ26uqW5OHmZZ+/F63RiftC2RFYxN9Zl0GPV1/r3HfjuwehRnDvEi7DZTvl LCJmp3bCxncAj0xnwkV/ujIoBHWTcVJqoteq51uZ5lubl/tm3c4xfqA0tjVzfn7YnfKd7rbT jm1Lml6xZD5f7O2WhEkK+YbBA3MERUt/vXShjOU+ftf6klvmJwenIJf503xU9uqY5FYchsQV cnu6yuCIif3TEbmhfoj4qB4v+MG0x2qH4rjza8IlGx2RLrLsUYlURdhPed/rmkEXgAemK+Ey 9R9Dwzi8sm/p1FP6cTjPd0B5g9Pvzsb5O6LuryqLORU8HA/9nxyijybRfCRcZCcdzpnKmz+V erc8iU7nJMGNc+Gipm+eX/3tOO5ZX9JvaRRoOVPgr0WIgwzU17tLel/b/00jbZb9U+NZgvvE mkY9rqZj2WO1Qxn+sHKqSPVhqV5UhNhdQljvfV0T3BHgYelMuCxPSI3PQ8sN93rXC7famicz 9Xwzo8YRF9POLB2l7L5CuBjB86zzy4/OitQoBuczpUnl6pO96isb2ln6vNEMhLTUdVMY7US4 2P5xSeWWkzXsz2NJhuCRyvGiHxR7rHaYOKTuklSunXK92OnMQRmTB5L9rutcggPAg9CZcLkF d4o7ML88gCpz4QH7/IMIz+u6gEh6CPGnKURO0RPz7sLFSt86P8+xmN9O9bVJuITjDZWeCZey f0JGKxquKFySIbEgXJTjlUJB2KO3hxcVLlPukTP3vq4RLgAPyzMLl2iwN9ynshuldYOzOrzd hYtup71wVXZIckh/sf8yDifx/3ixwqpwSfJ1p/TB3eyx4vT181vZr76SjtzFA1eWkedh9I2B qaOpIts/kT0V63kt+89DOsPo145b6aj2WO1QFrNyUfmShY+W6Zj1YuOSYaq9r2umigAelicX LuliXjHunf6pTfF4+/wdtYti5xW5aFEfvZevT2fFme7XcvZqWo3r/HLQ+WX1aLi/y3xDR+ty /4xm+oXzZWorfcO+9WVM2SR2ps/ZPrV8lXyORvWPXrl13jjFAkguspaVqB4vpGPZo38lF8u7 umUuXku/ONVoOuOsl2if65rFuQAPzDMLl1fCg+/70j2Nwy3TT+75OrS1Vr1+DTsk8Do0wCOD cOkY+dIy7I53zcMAgbuJBvV9tMJxWIfhFoDHBuECAAAA3YBwAQAAgG5AuAAAAEA3IFwAAACg GxAuAAAA0A0IFwAAAOiG/oSLuWm6hnxhOPxQvuY67Z0VWF4iFRu7LRuUHfaSpGrnrUnFL/Fa +58exGSG+kqwGWV6UxZqPXbEofWitue92OW6kFHNVe7cbu/Mxtfm7Z0VZWzwqWqmEApKDLVh HONI8mk0Sl4Lh0elK+HiRy9Crri121ke5bi0dX05Wu9lHIa6KCrtlO1s45HuNeWb8q2hAHZN 5+j4U0enr9IafXrcYOce18UGpb6XP1+kXhbyjQqDBKmoLJft3DMHNRdST0Z3T/cavv7cu3EY 9C2D2YgPHpPOhIt8YljfLb74CF4WLvnJ09b4q31kc3Toop1yq3W5v77cyj2KF5M9UY3FEY7w 0BxCBEjlJJ/GgjHhHHXr9yQozNmnz4LSUaUo09XyK0mn4J8xfhIdjCjcyRb4SXkL/hnjkbMl grGRfqFemuq90jPiC83Ptp3lLPLrwmwnqn+mRM5KMA3dPwU77fZTXy9b2v+mdjtqcRybhEJ0 cqgC+9FFj5I9RbU8XyWUHcMV4HHoSrhMt5Whbnx1TWSot/XCPqSliM23UAzvt3zlUyGiR76t uG3J9OcbnwzKaAdfnM0IzvHX0/zS2ch78eTMuaaymMmqPTKKcmUfoApQ1T+FEQjzyVsrbyE4 ZTJyFopTeLJX/dBc7wZqey74uXUEwrwuNL9Z/jFHBUb9iGWnVa7Wemlt/9va7ZgE41SzKxMH ZA3RKwtPX5aqO1+uKWQ3EIJNwgPSmXBZIrtWhHPbIFzkt8vlHUfKLT8SNY+4WHZmIzHh3lS6 sdYLl/jMpIMv3LgVawvB/+K5uZUo05nfajpRtauz7HdG4gXhkpfXSr8gahuEy7Z6X2Npz0U/ twmXwnWhmWf5p1yuWuFil6u1Xtra/9Z2m0v5MdH6FSyjR+JmtTTIYJKby2WOuIREshtIPiwE 8OJ0JlwaWBM3q8+s4Xno2EWglp33FS4ynVbhIp/J5G+TgbEV4bJ1NKtJuCz42hGX5xAuo2jP 2+zMKV0X9xcudvrHCpfNo7DWGOR12VDVfcbPU1fRfJndftQ2EzWwM8IFOuB5hUv2PoJbW5wb DYqK699aBLcXlp1Jxx/M2Ee4xOnL6YnlzHgKSckuyfEyDskakfir8lTRtvdH6oVL5E+fvk0W RtqjJ2ZDuKj+KbQ3M/21ehkr613Das8FPxfsVNIvXBeaeZZ/tgmX3E6rXK310tb+b3jvyWUt IQyNNM035cOHsv1YwkUu5g3nu2wiiakieECeWbiM8SLHcLeynhRdPN6brOCbrl4X/7kXqp3q FEyYipoWRcqpKJlIoVzqosJBrquQpT4v6Sfp5ItMT9fVo87PTpaLSaOboz1VUT/krtZjvX+i xL1y3Cqv5R+zHuvSV+ulpt4tlPa86mfNToXidWH6TfNPoVyFdmLZaZWrqV5a23/Jn0XywYwo nbqR3ZVF7tl1kdgZLqI5kXgkksW58Jg8uXCBSvZ6ORkAaslfh34weB0aHhOEy6vGeosKAO7A xg3o7gPDLfCoIFwAAACgGxAuAAAA0A0IFwAAAOgGhAsAAAB0A8IFAAAAugHhAgAAAN3Qn3BJ do4vUNiSfHkN2F03AM1ijsz7oyebd/n9Xx4+NqTAfhSiGVsofn5U6vc/bfOD0a6O5g7t9gjC 68GW/eVy5XEEoyOhLsIl//AOAYCcroSLH30QLpfRVXczhU3EoyjBcj+osAX4dLOT26XvveW/ ZWeB3cMO1FNvZyEa80uxo98a6kttV0V2sPNe7XZPpKMs++1yyTZmBQ1NYgCxwRpAj3QmXKwt zAuUhUtEvJHlEvPMiajUbqVTaY4ObVg1pSO3zFf3gz9ZIQLiCIKTDcE2X0h/jPxcitTTWCLx hW7nKEZonJ/Dpsx2+nG8Dk2poQmSJ+wmv5kjKDv5QW9XVvqF+i3ak9lnt9vcb9OR63iG97Hr 4q3ok4NJuwqJh/g49SM90Rb4lv1116MqXM5DNpzJoAtAh3QlXK7hx5q2m7SCtCkdp08j3J7c NTqdH4fz/Hx20GiHKrBOeeC3q/25DdItaZw2OaLuozAxSvo+6pySR9LWkSFVSKl2ykCPMthb TdBEmU6r38xy7eUHtV0V09ftLNqTYrdb3W8hQOZ1TEj297JtrLarJBJh/fXikoBBqv1r16PL 2ttUEGeoPYIIAnRHZ8JluXlVPyeVO5iogy8IF9GV3mfEZSxGzVVsyJ7Uk0EUdcxAT18L8lew s4akg1TsTOrUrwkXu7xtfiuUay8/WMLFTl+3s2iPcrLablf975ewfNOc7BCPUshgwmq7iuyv iGItS5cKF9X+iutRrlgKg3aRAhOmMlsE0BedCZcNrHYwy3OePVU0fRseWO824tLUAZdWv7YI F/kMmi+F3hyOMfhZtzMRLuJP006jvHsJl938YEwVFdLX67doT4rdblf8v4dwCccbLhZDuKT2 V1+PTms/+ckIF4DueI3CJRoclvfluINxp/hGeeVBhMtcBLHYs/ReTL1wkQIiTB8U7bSw/GzZ Kacw9IWWl3EQw1dWOq1+08u1nx/MdmWnr9i5Zk+K3W51v1nCJQsE6OKBMcsJ52H09cMtU8qq cEnst8slJYhchJu0h2SZC1NFAN3xzMLFes3YxePk821LXRQpDp4v0Z87ahfVzjDlFJYdRFNO Ph7nvyIXUYavXF6uYvpytmta5Tr9JEln1Qm6n207oyqQr0/LWjhHfsjT2eA3q1z7+KFiUXCS vmVn6Xw7U7Xdpn4LJ7g567DkNrkKZKZqu1qoe39KsigP2/5TsVyLSfYL0nL5FItzAXrkmYUL dM2D7/sCKzQOt0w/ufMmRrwODdAjCBd4OJYhKLRLh8gRxFZZ0PTC4K0w3ALQJwgXAAAA6AaE CwAAAHQDwgUAAAC6AeECAAAA3YBwAQAAgG5AuAAAAEA39Cdc1jc7v6Js7JbsWCX3ufLpJldy Syu5x/nur+laG+U9GmYUZeVU28+PtktptrnZffb1uEO7OoLwurJlf7lc+XZw0ZFQFyGs1cM7 BADuT1fCxYugtZfR1W1vpWz5H98NZUC4k9z+X3a6crv6e235X+CgsAM1NGz5b/m5nWPLq9b7 0fbcq13tiXSUZb9dLj2MQ/woIrfqH9kgDgA0OhMu6Z7fFeQdbXQ39PF+8EaQRRkn5T7RoecN 1102EmBvIR99JUTDtL972MT9JLbGV9IfIz+rEY4qhYvpZ8POMd56bn64L5Q33rrexweT8hYN 1YMg6n4o2FP0W0qhXeX+mY5cxzO814tc5Ydr4tPlM39VN7ARxSO07K+7XlThch6y4UYGXQAg oyvhMt1nh7btNZWONg74Fw1ry/umv84uubnfnXriewZZPIm4OatRjqVbJkctyBF7H4UrUtL3 Uee3Pbig4WfLziQwntSmVnkj0blWXhO13seSH/Q2UPRbit2udP+EwIrXMSHZ37f5oTpidoIS BDG3f+16cZlgnQriDLVHEEQASOhMuCw3x+rnMLWjXZ7mk7u8JVxEbLb7jLiMa1GOUxu0QHRy EKU2OnSW1HbhovrZtrMQnEgvb/x0nmjQhkA5lnCx/aC3gaLflJPVdmX5x4revMkPcnq0QYZq 0ZsV+yuuFxmhOkRzjBSYMJXZIgCQdCZcNqB3tH4eQo/uifZU0fRteCC+24hLg3ApRyVsES7y GTdfCt0kXFQ/W3Y+iHAJBSz4Qfd/0W8pdrvS/bCrcAnHGxqzIVxS+6uvFyfWuwRf5ScjXAAg 4bUKl+uQdXRLjDswd4pvxFceRLjMnZNYTCqfYlPqhUs2OnKTcNH8bNmZHHenqD/Ly5vMGLp4 8GyzcHHJCMeo+EGxZ81vKXa70v1jCZetfjgPo28M4KxMFeX22+WSEiSZFozWCcU/Z6oIABKe WbiUXzNOO2B10WXyHm/ylu9OqHaGKaewrCGacvLxPMIVuUhzmYLRFpMW0pezXdPq3eknSTqV TrCm6tR05PF0MCzP1JiaUctr22cutrX8YNlTOt/OVG1XqX/CCW7OOiy5TVppgx/q3p+SLMrD tv9ULNdikv2CtBP/Z3EuAOQ8s3ABAJPG4ZbpJ3feZIjXoQEgB+EC8LqQI3ytsqDphb5bYbgF ADQQLgAAANANCBcAAADoBoQLAAAAdAPCBQAAALoB4QIAAADdgHABAACAbuhPuKxvpj6O43Wr qyiA4imO53fd9irEeLPOL29kdyNlO1XCnl1N+3CU9tXVTk78czQb/HAfmvzWmvJx7aop9/vv lRJeq7bqvdwe8m3roiNh47sQn/IBGhIA7EVXwsWLoLiX0ZW7k+nmJaITD2JL9SQK8bL9qHZ+ OPOQDmwtX/N3xo60t/dBun+OZqsfeqc1aOU+PnnZvlxuZGfVe/n6FXpFBmtUQwqMbGQH8Fx0 JlzSPcULXMbBRfFTrFgqK+eH7+s6mObo0Ea+UjFMD8d5JKP1kAWxSVUdpOWfcRzjreiTffrD JvTLV9Kk1W6y4H87ncWeIeqJ9ePerJGwFf35vHyr+m2uF6f4wUpnpdznuvTt+rX8Y9VLOtJT 4R85ArfsQddUv4IobmLxOi1cj7n3ZPCmdPiKQReAJ6Ir4TLd1oe67TunDtiPw3l+3ppvfNZO 59b54fvjRlyMfAtBFi17Ck/ktfYXw/JFwZLiYH5L7+WV4H9TxZWw/WClI0tkPYXL4yFe8Rj3 nUkInlU/TzrAZ9+W0zHLXZ3+aNRvyc9avcwW5tVh+CcfgZuya6tfgRKsMa/3tevRZYIpzPla QVUJ1gjwHHQmXJabWt0T/ChitlUJl/z88P2RIy5qvo8lXLKRGO+iJQjpr7TAe6XRessPxXSc kbh+XA1GGLclVUZURe1eS8csd2NU8NSHZT8XajO/gqxgjeq11lq/8Q/zKNNKvRevx7l8YgVS GKSMFPaVaJgHAHqmM+HSQOhor8+RK6LHOj98f+iIi5bvywiXVf8Ei8rCxerwCvkafqhKxxtP /OK4fOZefJuUt8LPNcKlPoThrcKl7J8W4aL7x06/rX5l1ppwUa7T4vWYmyFtzk9GuAA8Da9A uFwJ97LkPREXFuca58/pHS1csnyXHOumMEY5eu/TJ+B6+3X/ZAH23Fo/3fY+TnV9yROit05c 8bjsqi/jcIo6uXB+/rBeLyzK6Vi0Cpe8fkt+rhcutn+s9rD5fStlqkhgrUWTU4fWNJb0W7LM hakigKfhSYWLGMc+X6I/w70vGhIvnn/ga6tlO+W3YrGnKwzRe+Vg6XyD1D+ZtdFUgrVoNE6n lG9LfZUPFo7LWbxp9atckjJP6gnBofotJOL84m2pL/N0LNR2VUp/1OvXKrJVL8nJyfoVxT9W e6iv35hkMZBa7yfjeFo0+wVpJ/7P4lyAZ+JJhQvAJvYaVztqfO45yIZDDs+Q16EBngiEC0D0 +vQjpPP0VL0YuBcMtwA8FwgXAAAA6AaECwAAAHQDwgUAAAC6AeECAAAA3YBwAQAAgG5AuABA LbzmDQAvTn/CJdofs0hh47jltVW37ACb7Ka1+w36wI3stqL6YWLzvqirtEWrPr5e9uU4v0nC 68Qu7NI2Zz+/jG0dn8i3a4uOhA3ftLAA8uKTUaMv59Gd7R0Uj3/5udyujq6XA9PndW6AmK6E i5+3Lp32unU3bKmuRw+O78sHbTXxOM+sBT/cOfdV7lAvPSE3cJvEwfVP78ZBBqfMj9uRtOUj gdxKP5BUWR41evp5ooAL8bOO4NDr685lCbCBHoCkM+GS7gVeQU2834CLd4gv3Cyao0CruU+9 y/X52HvxtDpG5U1SDluey1AA0Y7pFSrE8kPhyTXPd+6xxGCSGn8gT2qzcAn1Mo3EBBtOxq7/ 1gjBIoBsv8kN5eRTr3pc9VvJP1Y9rhHFC7yMg4vi+6z8P0YVLudBHw4sxxgKRL1sTbBJrZ1M Hj6Lq2yqLOu4WqJwxGqEentQ220WjiCUsZB+3g7L7cFqbwy6AEi6Ei7TZT+0PXNbwQjVjuoF RlxCQLtr2LxFMPnIGGZoAJIAACAASURBVBk4RoZ6UYP8TY5apbDTa+43K9/pXpwGhrTtt9Iv YNaLnAHxS78bBfe5Fi0fIQh9oeo3a0SqPFJldZy5fyx/rqIICD8O51kxREEK8+MikaTep4bn DEvSchUUidA0UQhxC7udL/26iCltHdfttI9b7aHQbpuir1vt0GoP5XZFkEiAQGfCZbkpVz9/ lDvIpIOXcenKHck+Iy6jKItfwuzlIehOMiLgoKWmBairH13OhY5pZ/atGc3YCMqop1/ErJe8 +8xGAkLf6dQ2U/SbM5xpHVfLpfvH9ucKSVd9LW+IKZhEV06Px8iVGWG6Rw1tnaxuKQ+lzFqw 8jo12kkiGuSAkHo8/FkpXPT2YNszNgkXux0Won8X2lUu/QFeLZ0Jlw2sdgku7qiOvjnUCxf5 jBWpGXnDFTc+80Zchys/udr5Wjdi3X4r/RbbVDMWO5uES6XfvDGClR3fJlyqplTG6w/VKZvr OEEiXNLjGU6MBEjRsDKMURYlfp7Cq+lrrXaSDHlK4aIeN001jpvtwW63RwsXcbYya4lwAZh4 jcIlGnSN7y8PJFxkxxCmk8ZxjG/c8uG49b2Ggh8UO+181zvm2H4r/bKptcIl69hC/5T4x11N svyWzkm5leMTtcLF9ucq5bUmqXBJjsddYDJdIu08rV0Xlj/Dn1VjfsV2Ljtvab96PJSifqpI sb/YbpN1MOV8rXZY0x7ydsVUEUDgmYWL9fqxi+cFZOdhrfjbBcWeMCjt5lvhstzVR7NR02q+ fAppiDu85M3hcrdh+SE5nqwnSPINRoZlOmE2x7LfTN/AqpcknWi9qj3Uv3r8FK+lyI20jqvl KvinUI9lksUxi2e0aa/kuE9MtV+QDnNMBYlp+bP8qwSrnZyHaBFrtDZIO261q0J7U+03r7sx WrdbrvekdkIihfZQunhZnAsgeGbh8hp4qZerH+el7uegzZ/Z4/ihvNSzvrU6/hW+D8/r0AAS hEuXFN4Gesp8n5XN/nz6ztvyzGtsgQy3AMQgXAAAAKAbEC4AAADQDQgXAAAA6AaECwAAAHQD wgUAAAC6AeECAAAA3dCfcKncR3xCRn+9nEd3jnfiSvbv2o803973YLis+611397W8wEAAMbO hIsXwZMvo1vr9vLor/POrdnOEPvqCivfO7B7WSRH+w0AAGCVzoRLupd5gSxWSyDahnItuF1z FGg73zHe1XsZuhiugV388tV05vmcllcqoWlcx4oOrW+BP6TGhCAD6S7j1X4LP1fDBoV8h2x3 +dL5V2Pm8rr0OAAAvE66Ei5TNzbUbRtaUCRCW4SQrbth5xsF0gvRX0Mgt2vYNhkFN4l7Evpy S3ipoyDSXZMDpbWLmvFrI0NFv6nBBWUAyNUoyrp/rtrFG78CAIBXRWfCZYl8u7oHdnEoZe7L K9JpHnGx8rXC3FvRobNA9uF4m3DRAu8t56wNOCUU/KZKCqdmqp5v+adYXgAAeG10JlwaKIsS P0+R7L/6xMp3k3CRoxobhUu2NiU2olEH2H5bGQvxayMuCBcAAKjgeYVL9t6KixfJusMWTFj5 JkLEhakiW7gkS1LS6ZLLOJxS4TJn4ZfSld7fadcBlt/UqZ+lvFlA45Xzhd5CuAAAQOCZhcsY L/ZMBgkOXS2h5xvP2kzvRs1H3Cw1wlJZ58fzEC1KXayVbyOf46+8PjUj7QlfuXj+qHLwKfdb kk5IX820cL7iHzFVF5YBrUzVAQDAU/PkwqVrqtYgAwAAvCYQLg+KfJEYAAAAJhAuAAAA0A0I FwAAAOgGhAsAAAB0A8IFAAAAugHhAgAAAN2AcAEAAIBu6E+41O/Tn2yAJnct82552Xj3jf8L +RYo7W97M2p5C1GaN+N4fxsAAI6kK+HiRfDky+gqulsnNmwN+7l5t2w/H7ap3Rc13x1RYxJZ lMu7+w7CpdBIAAAAt9GZcJEjGTVqQAqIoHiSYH5lmqNDW/mO4xgPxsgT8mRnheGy87Nozyuq a628qnDJ7ZSKZxq/UUMQOI9wAQCAA+lKuEzd59AwhqGMfNwlSp864nIe4qBC5WjJV62QBla8 plk74rJWXjXYoWqnFezQCRHJVBEAABxKZ8Jl7rBDROU1XD5M0ihcNo+4pCdnIx/eRfJLFS5W VOQDhYttp26Pz36OcAEAgMPoTLi04k5ZB3+XnlXP90WEy1p5ES4AANARr0+4ZO/vuIMX5waS GS5XMVVUEC5zUj5aLqNSLq86VaTauZx5GYdTNFW0mOmSqSLvTqfTKXdw63EAAIBxfG7hIleY Jmti5Fe7d5JmvvG62pCvy6aivJiicn5ZlRwtPckW+VaaVM63YKc8fj5Hs29LIi5Z5oJwAQCA PXlm4QIAAABPBsIFAAAAugHhAgAAAN2AcAEAAIBuQLgAAABANyBcAAAAoBsQLgAAANANCBcA AADohv6ES7SfbBG561oSYMiHqMvDNUGvbcW2KwV7CiT73u6L4gcjWvWNrAdfXPN/4ofJ8spY m/enPg7oK4JwEACwB10JFz9vKev8OF5GV9GtqlGavRtP13A8UycdlFASP2h3VHt2pCGGUdEP oxYK4EZcRafV5P/HFQd+cSxIvNt/o2oAeG10JlzkQ3lNpyWFQlA8g92p1Hecm6NGp/aM4xgP xsgT8mRnheGy8+N9+tdDGRT9MBrCJbdTKp5pFGT5lTDJ+e3CxRoBOg/j2YsoBJfl+HRy+OHs Ca/XlH7+1fgQYPK0OmgkEkycn/ttOnIWrWgpuKxKEShKr/c1S0I6crSjqR5Nf8YjdouO1Oxf isagCwDcRlfCZbq9Dg2P2soIhy/JixcZcTkPcRCiiuCLsr/ZGDW66Ac1X8tOKxikE53x+lTR 9Gvb/6o9S39/GQfZl3vRa/qreT5yfqQtjPO3+TYJsWn5bbJf6s6gaYITpga//N+odxV5jgx+ 2VqP82mZf/IRu9CeVfsn3ANP8AFAF3QmXObOo/q5TcYRDBEBdxEum0dc0pOzkY/Ehtao0UcJ F9tO3R6f/fwA4ZLMbZn9brDBGpEyvLH4c81dSS5e/mn4Tbc/GzmTYmWlgBkuS6S5Hu3s9CE0 2/6JfDgKAKCJzoRLKy4fUS/2oLLjrF8FfKs9LyJc1pTEiwuXxP+qcEkcVe7X5bN+WrmWDrge b3NstXBR7bfm1DYIF5HrdeTjaOGytpgJ4QIAN/L6hEv2foozFufeSbhkHZirmCoqCJc5Kb++ DKLgBzVfy87lzMs4iGEnlyyGOEC4LGlmU0VpRyuV02Uc6kZcplx8o0rIp4pUv0X2C21kvUfW KlyifMV64dZ6tLKz2k/5PThjqsi70+l0yi+41uMA8Pw8s3CRKxCTe6X8KixoyKd+9r0vmvYY UxhOG3IPU1TyFe5oycK2xZtr+RbslMen1aZh0GVJxK0tc7H9r9ozLQuVi1Wj9TSanXJ2b/qh mn5a6RUSMPdqlIjht/MQ2Z+vF26od8MMfb6msR4L/lHbz0rWehtAuABALc8sXAB2oHVSZqx9 HfpxX+c+DF6HBoDbQbgA6HinDyfUsCpK5IvKrwXehQaAPUC4AAAAQDcgXAAAAKAbEC4AAADQ DQgXAAAA6AaECwAAAHQDwgUAAAC6oT/h0rShrYxeWz6exx46Yo8Ny547pF/5cu99/PAiWFGm reP34ZaXrivTf5FyNSHb7RE7VndHZVBSgNdJV8LFz1uITrHo3NrtOI1eO6wcT7ZU3/3GYeVb oCFETjn9li00jvbDy2LFVa6Jt3yANX1vbdLUPi3yKNMIl3Et5BPAa6Yz4dIwEpB1CfOundbx vMMubn7aHB3ayFfeqafnThkvprQVfWV542f6msGegh/kVu5JHAC5Ff2GQRrTD0m+w1zM0vm+ VCO1wuVarhCAcNV1k5HDeWkbSqgEkYJZL8b5VvrWcXUkafabyFo2q7C7fxS6QaXYPpV2Ukin YpfhhLw9WPkW2olZX/EI0LKXoFEvBfR0LP+I9J0XwqU9X4Dnpivhch1IqNkrXemf/HyTUo+P mRbZ96mvnO/t0Z4L6Y9j84iL6ofzEIuD+MZ6vmjBC1uw/CCLJoM1mn7zkc2JPQ0jLhvqwove xc9Zy+ZaMxJWOl9Lv3TcCNIp+3XZkc8/zIMsGqg+MduJSntEBas9WPmWo17nfstHgPJo3jUj poV0VDtdEm9LlKspX4CnpzPhMt8oK7rhbcIl6QkK8qh1xKUv4aL4IXsylpGck/GJbRT84DQh ZZ5vBRG8/qp+qmjxf2X/qkalztpJKehg+XzLDNu82ujisSWVE2dK+yy3kxbLCyjtwc63LFzy 3PU5mnK9qEZa6ah2JpaE6mjPF+Dp6Uy4NHDjVFHjKuDt9uwkXArpq9+WUlL9UO6QvK4Smih1 MEuu60/S8sk1r8S2NS7XZGsror4jnHNV6qV0/r2ES6We2EG43LjKJ7SHo4VL+6KTfYQLi10A Mp5XuNy4ODfu/3ahkK9c15IIl9kGv/6kdcjiXOGHZIbOCfuDbe6UdgynU1Wo5NH2Q5Svj8qo nC9Lqk1dtS7OPQ+jrx8V0M4svdej1Uvp/OOEy5guwqgULnn7tNqJRVJetyZ/rfZQaJ/W9VVT X04skWkaHLLSsex0ySIbcb9qH5Ty7nQ6nXJHth4HeESeWbiM9uvBNa9DH/GOiW6PGA1OF0X6 tvFhNX25EnBVRpT8oE3BhPPl4txoCUK9/jP8kNivLmaU58siTKtQJ1PdKS1aEFulofgKyThq 6ViLVU/xolq1XtTzrfQrj0/plOpL+HOoEy56+yxO1anI8q6eX9MeonSMdlJZX6v12Fwuy075 8oFLl7k05YtwgefmyYULvCyVD+4PzaZFGL3zMi+HAwBUgHCBw7iMQ88LCY/eGu4Bka8ZAwA8 JggXAAAA6AaECwAAAHQDwgUAAAC6AeECAAAA3YBwAQAAgG5AuAAAAEA39Cdcanfi9/qWTeEd VxkV9jTosYf23DnXsGcD0zurlbZZ5W2l1T+FrefUqMU3UhN3s/Dbnev6No7wj6Rc3k37tEa7 pW1j28vnt+cLt0ZdALg7XQkXP2/9OYXOcRW3VzVOSnJw2nI77LgVQvzc0hc22bOBJtvU8ray wT/lE/bc4szXRhWwOKKub+TQLeCOKO9NIXVu6Dtr8m2I+bWJ3tOP4poBPDydCZfW4ZB64SK/ rbmGW6NDF+wZ4y29fd3x8yWyoWCyWt75sfvc5s9R9Y/XPXAexrMXu63H6Ssds9wKvaUbOw+x SYY95RQUf6r2xHGw55/Y1soRr8WwYd3OxD9TRiFozskKxVDnN7W86kjPnK+LPZPl63ytgCgM gtYWwcpX9WcWXVndYr++nQQjrejNIf3pZDnS6cv1GIfsmMWlkX4hHTXf1NQ8JjmDLtAPXQmX a+zA+ufF44TLNlR7on3xfRSgRD0+xh3PqrFWeacbnLypVYZDyoVLOCA1RDQlkaWfCxdZrWmQ yCIuiy6k2lNA9adpT2ME76ikcnCoaOe24IiVfiu0HzXfcJr8VkYhrZmyKbTnpo7TzNf2p15H je1Ell0GQTTTH6/a6KpTy9Hg0yCpophq+uWo13m+5Xaye0xZgOPoTLjMF3D1ba6DERcrzL11 fBzH8OSX3XoSe7yWqRQusqSVi4cU/xhB48rppx1k9mRZo8nCD312RHnCtlH8WbRn6Uh81JFb 5zsRWHGpi6KdtcJlk9/U9tOWr8+qr3xJFttzg3Ap5Gv7UxcW7e3EGU4uCBd1LE0VHIUhqw3C pTScaRSB2SLohc6ESyvy5hiu8/Id824jLmGxzjbhMo3eV46RqOVNBq42Cxf5rCYTKaefd5Ab F0lkwsWyp4Dqz5I9146hcvHBbEa8FqdsZ/2Iywa/FdpPv8Kl4E+1mja0E2lG5YjLowiXtXaC cIGOeI3C5XKOh2Sz++ldhUvWwTtDWLj4Rnm+zAPCq8Za5T0PdTffrAiRf7JH3miqKP6qPFW0 7X2WMZkqsu0poPqzbM95GH1L4Gg3ZMMtRTtVASFHWeQUQ6vfCu2nQTAl61QqporMkc7GqSIl 36I/l6xDkdvbSWR/rEGV9K+nlVYvFevRnbRnAJG+lY6Vb7mdMFUEHfG8wsWn46JyNFguggsk sz87q5eCPdaQtT0FM81/Rws/y5lr5Q2P3ZWJWP6Rx6cEnZ9zlOlH6xLsKZgNVZDPSeX2lH9u +bNkT51qjKxy2RHNTtM/oj1Mq6qr7Kwur5pvMHIeMZL+kU3aVSxzKbZnmdQKRr6leveKc7a1 k0JjSI4n/lSv60I9WuvNI42upWPmWygCi3OhK55XuMAaD/gO8EZufh16W6bHva4McE94HRr6 AuHySpEvdj4B9xRh27ZKA3hQGG6B3kC4AAAAQDcgXAAAAKAbEC4AAADQDQgXAAAA6AaECwAA AHQDwgUAAAC6oT/h0rQ59/LSrxvdEG3ZNO+eGW/WFO2M+SyvCgMAADwNXQkXP2/lOYX4cRU7 varRXJOYHUvgRrFrp3fjULcFPgAAANyNzoSLPjpikEddmYi2iZRRdp0QMW4lds+26NAAAABw C10Jl0kuDA3bpOr7w4pAtUvUw+mgH4fzrGwqgw4CAADA3ehMuCwjIo2rTybFE5ilTxIh1o3j uMRsY8QFAADg0ehMuNyCy8LNR+t8wzCMn09jxAUAAODReGbh4uQ6GDE9FL5NA7vHJyBcAAAA Ho0nFy6FxbzR0l3xXvQ8hSTfmgYAAIDH4JmFCwAAADwZCBcAAADoBoQLAAAAdAPCBQAAALoB 4QIAAADdgHABAACAbkC4AAAAQDcgXAAAAKAb+hMu0T79Ba6hpJ2P/y82l4u2mItDT58aYyEB AADAHehKuPjRB+FyGd1aRMNI4vjx5Iz/X7WL3EvXOyImAgAAPBydCZfCFv45VcJF6JU0CEAc uihPnOjQAAAAd6Yr4TLJhWE8D+uqZcy0xaIqYuES/pTC5TzUTUgBAADAHelMuMwRmy/jULEG JRlxqREu9WMnjLgAAADcn86ESxOVwkWZKhILXwAAAOBxQLiMTluceznHozIAAADwADytcAlT OfJ16OGsvA49i5uw8vc6CXUeeCkaAADgsXha4QIAAADPB8IFAAAAugHhAgAAAN2AcAEAAIBu QLgAAABANyBcAAAAoBsQLgAAANANCBcAAADohv6ES7Qfro0aS2gKzehO6V5z4eASu9GnJwAA AMCL05Vw8aMPwuUyumJEw7B/v3ez0IliSl/GYRi9i4+clm3+vRuHgXBFAAAAj0VnwiUfPlkl CBfJrH5kAKPLODgRfTr834Do0AAAAPenK+EyyYUhHjtZQxUuQZS4MBl0GQc3S5npJ2XhAgAA APenM+GyjIhUrz5RhIuPpoTmbyfhMi12GUReBoy4AAAA3J/OhMsGcuHiXSw4JhFzFS7TSppx TbgAAADA/XmNwsXFozVyXYtyfGe8O51Op3zyqvU4AADAa+SZhUsymzOrE+vVaHlcnLa3YkC4 AAAAbOeZhQsAAAA8GQgXAAAA6AaECwAAAHQDwgUAAAC6AeECAAAA3YBwAQAAgG5AuAAAAEA3 IFwAAACgG/oTLnNg51WuoaSnKNDL/6cvw67/2S664bh3DaEc65EBB9hX7ji8OzZ0FPXYF63t 4ej2cxxh480Ht3+62Vr32H79vyPLHqoujlQzjJPbwgaqr81XXQkXP/ogXC6jW6uqSOLEgRXD /6dw0+F4qP6pxewvXFrCQxboJY7S0Xa+mB92qsej6aWdvBQv2X60B6c9czjv0Jnd4fo94uHw OZiUyuwfPz8gTR2W9Jl7lQ9OnQmXdG/+IrpwybqcOZjR1q7IVUcGSIM7huxEhIHoRibKu9yD 5MnicX9SWtP/p4zCT6Ynm+G86HdfztdCPf96UI5sJWETkmEJ0x61vInrhuvNzk6/8MS5jKhd M5395tLjBcx61NIvldcmPEidz6Igdn3JkcK5Gb9cO9mQjlK/tj9V/xTqUW8PL9d+RjVkvcE8 LHFe0l/ue/b1MibCZSrscL1Z+QpTj75+r0mdL1FsFm/4v+xn/XrpivMQKZL8yfk8zFUQKRWf uiJJ51npSrhcB0gqdXoSq2hqzcqDiB+H8/XfduqFyzjq8kgWR44AhTjVo2i14c88x0SoRcXx orfw82lmvgbm+ZdxEGJl1U7LHqu86QjZKbrxWZ7PK/o8iCN+sX9K0xu/MlLX61FNf/4zL6/B UvbLOMTCQvW/tNm7VEjdv520pmPVr+VPyz/lelRr9sXaT8vdZhIKUvwFoWDdHxRLwrXpF32w Kp7ucP0G4ZJkpNag6merPfSFIlwM/SH9GbVJLZ1npTPhskRyrrh7qjfoGuGyRF6M40XvQG55 9mSjP6FWCIJyh5SWupCvZXnh/Ou3iaAs3PiU+4tRXmfXdUPHk0X/DmuYSn6zUOvRSL8h2Szl pRRF/zujEl+gnbSno9ev5U/LP2v1eKtw2bX9lJd35CfLa3/Jzr4/6PZfdcZ0W7tRuOx1/S4C KElMEy6Kn+320DUF4bKI1/DE+ProTLg0UdPQRzlVVOh49kKTXNaF7U7RE+rOwqV4Q9HtKZyf LX8u2GnaY5T3NQuXSE9XDnXcNuJyeztpTecW4SIz6kW4zClfxmGInp4tkgHmkF3h/qDbf7Bw 2Xb9TrM/aivdIFw2D5w/GuVFltNyzJrG86y8PuFiL85NbhCVwuX2qSJ9/bw8U5uCkYu20uHT fMhUu573es9CDuG6OF/VTt0eu7xJvnKK10zfGOqXFRrup/sIFzv9hmSzdORQsOX/KF8f3cte pJ20pmPVr+VPyz/bhMv928/lvEiH2jVDuRgt3h8U+7cKl3tcv5nzFfttP1vtoS/yKZ5ocW5S tMs4DPpwC1NFfQuXsMBFLhqNtMspG6VMRrPrxGy9cJEr+5L0k6/kur+5FC4ez/DpyYn9cpGa nEfIp5yapgDy88t+Vu207CmUV+Yb3W0r0i9Pva3YX+GEpR6toXLb/zoinWFIhWBerlIlvkQ7 2ZCOXr/WVIjmn0I9mu3B8M/R7Sf1Q8WIi1yUmqzpya8Xxf5guZuNXJYzl+vyyOs3zJeFu3Gh vkp+tq+XjlAFR7RM062fXzj+ZDytcAF4Ap5mzv4gXoN/Kt9FgPF1tAcYES4AD8jyhNrDbjH3 5/X45/WU9Bbw0msD4QIAAADdgHABAACAbkC4AAAAQDcgXAAAAKAbEC4AAADQDQgXAAAA6Ib+ hEvNho/jGG9Cb2xIfwtV2zfdnH7yCQHJdsi3c//sjoz5fE+zt+xLu1O+L1Le18ZL1W8lm6/T By9XJe6x36BeegEXB6W/bjEXNut7grpooivh4uctFKfQQq5ia+1oq9m9wzrUSqitiU9tcQ6l JPah2ivfB/RPIXbMsdSF7Xwedirvi9VXI0fb+VJ+2CXfQ+9jj8+WUFx3Idry38/6Mg++6F7l g8ctwuXjx4+fNT59+nSUcEmGH8oUOma5BbXcX386f2oxSXyNOdPz8tXlPLrzstt0ZeNpi20k hEtULjVfuSV5e/TsF/ZPFj042Ro8bFK+JCXaQ7IPutwiXeYrN6oKPXf0KHNK48Lk6Sj2TMYP 18r1VUUOP1dj6OR2mmh+KJ1ulddqP2r6Rn0V2olZj43tVj//elCOIM5BGfdoV6nrhuuDhJ1+ Vf0m15fRbleckAyb2f5U7Deu04I9NeVyfh7MKN03Wuq9fP/RrxcrfXHc+UcRLslW/XmQxRAk PFIqWZgntvxfFS6fP3/+5S9/+dVXX3311Vdff/31r371q9/85jfffvvt58+fj5oqmvRm5R7Y yWyLvIFGwXTWgqUtYeXjoHSybdVvNb2LcFHzlW6pid/2gP4pRKNd7j7+mp2PxETSYaQBBeP/ e5fdy7SgiaofdHtCYLnrraTyQVYNJmfaqWL4oZjrSpDIqP3Y6av1VY4+nddja7s1z79cw85p QUlvb1dpcNY4AJ7ldTVYo3V9qe22gJqv5R/Lfus6LdtTLpecgqkJjlh5v1LTsa4XK30Zxfpx pooU4WLoD1mP5yw2E8JlVbh8/Pjx8+fPzrlf//rX33zzzR/+8IfvvvvuyBEXNTKqjRkGvSk8 fZxXcmE3RxVuRx9xUe2Mn8BqnvgfzT+FDkYPoG086Vr5Oss5eYuy/aDbsyn67mh0UaadehJG MMLyT/LyWu3HTn+DcFH81tRuy+dfv00ebHZpV4VH8wbh0np9FVHytf1j2V8QBA3RtpMWtfrA s9f9airaWqNdvvJFsx+GgnCZiuav/3mdcaxuES5Bu/zud7/74x//+Kc//WlSLY/yVtERHXP9 hb0XtcKlfbL2Af3T1MHIJyeZV1W+fm3E5UWFi2mnhuWHYq7K/dpqP4X0dxAu7e22dL6xzHyX dtWHcCnU4z2Fi/jz2PtVgrhe9PQ7Ei62KJlWRsuhl9fGBuHyl7/85R//+EdYh/vp06fPnz// 53/+Z1Atjy1csmirTlxg8mlAPV8OzW0TLvuscdHybV3n/4D+WZJK5m4LQuFqz6pwicqVLEZe mzoZk/vgkcKlZKfye9MPtb8KWantp5i+Wl9WO5lOy7NobbfW+XJqw2VrIG5vV0m+cqmBmf5q /cbX1y7Xi+Ufy/59hEtcLjllY7WHDfer1fuPvF6s9J2ooKqp2LuQT/FEi3OTWaHLOAz6cIsx VeTd6XQ65feG1uOPwgbh8re//e3777//UfDTTz99+fLlp59+Ckc+fvz46dOnlxQuYQGHXKyn jlKqi9rkIlN5fLi2nlL6ReqFS7IGxccH1Xzlor9yLg/qH68YL8eBkymh5aCbvyrkazknOb4I BWvKILcnnOnmTIfrks/CpZ+kE0yqr8SCHwqY5TWyLqWv1ZfVTqx63FDk/PyV9nZzu8rzjZxc kf6pOPW24/VS8Gduv5VvwZ6qcjkh9K37Rmu9G+kUEtG/ki95uEdZ5qIKjqgLcOvn28cRLn/+ xz/+MUmTAp8+mkCR1QAACNlJREFUfXph4XIQ9YtwXyf4BwDGB37NGJ6ADcLlhx9+yGVKECuS 5xEu8nU7yME/ADAhX7oGOIINwiXXKD/99NP0b8LzCBcAAAB4BDYIl1ygWCBcAAAAYE82CJe/ ttAsXP4fAAAAwAuxRbh8BwAAAHB3fvvb3yJcAAAAoA/uJlzevz29efdhd/sBAADgFXG/EZcP 7948onJ5//Z0g6L68O7N6XRLAk/O7J+IXZ31/q1I+e17M+/oq+Wb+Bd3I7kUlkK8ebc90Q/v 3tzycwCATrjnVNH7ty/VURzJh3dvEC4WQa2Guj9Cvr5/q6X54d0btbm9fxv0wcu0yDjX928X /TS1pZ0SBgB4Tu66xuWhBl2iZ/VZelwfxd++F9++fR++ePv+esZSjiBcpp9U9BxiKGBJ5prh kvX1u+X0N+/evd1/0OIuqH2qGBKZv3z3RhaztqRNwiU62RI3R/LujXBFNkwiFN5c/qVRLqdE 7SFqiwy6AMCzc+fFuQ/5TBiPmcgnYPnH+7en05s3b4PAkbrizbsPtSMv79+KPij6Q4qXKdm3 7yfVck22Who9HnnFp06/9rjv3pziIYj18prCZRGm0smxcLl3Tx95QpHy0r6pwicL378Ngmb+ fdQ2wg/6E7UAAE3sLlzigYyso83u1Nb5rcdvoEG4XM8Sx6dfv698dI9S13LLV2NIf6U/74ZU uGRDHaG/TqRKzZiILlyM7F9YuHzIB1w+RCfEwiX9NjY4/3mV0AMA6Jn7vw79eIMu9cJFOy4e 7CvKtSpc8gWmr064RH1xq3ApTBApltx/qigZQ7KniqY/ysIlPwHhAgBPzwvs4/JQK12++64g XD7IaYuScLlOFWVrMvLR/LWpoqTbeeapoliRyaki0TfXKAtVuMhKjdTCh3dvxcDZ3b2Z5lla nKsNJUm/ZbOTTBUBwPPzIhvQPdigizascTqdllWib969ly/QhjGWcDy8OZMOvSjLEOLFF8nr JSHjD9rp08LdR3JdBfEb0fFgg/bFuzdv3r5dvlnph/OZwyipJRX5o6Yxst3JB0W016HTgkWj ROH0N9nwFItzAeDZeZmdcx9r0KUfNXDbpjN98FBN4xD20+0f0mGrTtoxAMANvN4t/60BjofD 3kjt+bDGSJ6MG8WZ7iWGWwDgdfB6hQsAAAB0xxbh8lsAAACAF6JZuHw0GAEAAODVY+kElZ9/ /vnPf/7z//7v//7973//XvDDDz9M/wZ+/PHHjx8//vWvf0W4AAAAwG4gXAAAAKAbEC4vw+U8 DOfL68n3pXi08j6aPQAA3dGNcHHzj4bzZRz99S/nX9qB2/DuavrlPJwShvMd8g1/H53pkkVc Xd6dki48uGK/rj2Ud7JCJHw9sFNGzfYsxy7n4bZ2fB529RkAwGOzi3D59OnT58+fP336dOSI i3fJvfmWZ9fz8JKSJ3nsjv68nIcbetNyuZJ8vVukxOU8HNKLtxdnxzGJ1LFCOnk3DHdvA8cN tzCOAwCvh9uFy8ePHz9//vyv//qvUrscIFwuc6d8Huany9BJTw/qw/lyfWRfOiQxnCG76Ijl bPlVXXcrRyxyVWCMCKXDHtf+zLs0U7+MM53d8lit2lkol5pvJinC17Y/DXtWnRObWh5ZUXp3 u16WL4YhU0hZeZ2f24z8v5r+dGQY5kqcS1JsV632RIksrpD6Sg4TzcedM/IdzhdZjhVNptq/ V70DABzKjcJlUi2/+MUv/u3f/u0//uM/gnY5RrgM5+lR2c3/ER2DHPn3LnTAyx3WO9nnqSMT 6fP5mnZJRyxOVcIl75iX/ibrleV8UvhVwc7CiEtpmOdqcuQuzZ+qPSXsERdr+CE/bpVXnuld 6r00nUn4ejecL5OCEMJXS/9yHqb6u1bzVTmb7arNHkk8mniRtSi+ChblqQnhsj6MVLgudqt3 AIDDuEW4TKrlX/7lX/793//9m2+++fbbb3//+99P2uWIxbneDefpPn4ehvMlFS7KY3p8D5en KB28stik3AfkAyQ1pI/dozXiEnf5S0dVtNMWLtYwT1Kgi/L/sj1lbhcupfJa62dGxc9ze/Du 2jEvoy9q+sHya0pzAqV21WKPkcRYFC7q8TGMoNQ0yOJ1sVu9AwAcxi3C5d5vFZ0H59zJ+fFy Hgbnovvv7cKlWYhsES7qfV/vDJIuf7G+lK8lXPT5F2OqKM5u1Z4iO4y41Pk5HjnQyztPwPjr QMt1QkZNf4twabHHTmKbcHHOVS1Wv0241NY7AMBh9CVcrgsq8yFr7X6aLjqJplQWGRBu9/l7 LmXi833cb6hTRfpjdzbsr0xhyOH9gp1quax8S4tz1/wZTTcU2GOqyCpvdGIiu/LyZh12+FtP 3xIudrtqsycuoT6LF7fzonAJb9vlTS5th4XrYrd6BwA4jJ6Ei7wtixtougZUX2yb3Ly9tcix fqooPT99js2OWcMt6UyFto54GBJxY9iplavwuK+9Dl3lz8SeVeeIhNL046Woes5qeS0nFJf3 DueL/NNIKpzg/HVy6bIsmzXaVZM9STUYs2PLYlhpUXDVdZX6/F+xhjZ57TubNVMM3a3eAQAO pSfh0jmtAzoRN6wtuCnfA+w5mkPKewPr9jywM1M6MhUAnpVbhMvHjx8/axy0OPc1Ih5177xV ms6j2dMzYoTj4Z1JvQPA47BBuPztb3/7/vvvf/zxxy9fvvzyl7/86quvvvrqq6+//vpXv/rV b37zm2+//fbLly8fP3789OkTwgUAAAD2ZINw+eGHH6Y/P3/+/M9//tM59+tf//qbb775wx/+ 8N133/3zn//88uXLp0+fEC6vgP/zNl+hkyyQAAAA2JENwuUnwZcvX37++eff/e53f/zjH//0 pz/9/PPPX758Cd+uC5f/+r9/5cOHDx8+fPjwedjP1//9PwgXPnz48OHDh08fH4QLHz58+PDh w6ebD8KFDx8+fPjw4dPNB+HChw8fPnz48Onmg3Dhw4cPHz58+HTzWYTL1//9P3z48OHDhw8f Pg/+0bf+AAAAAHhM/j+X9qUx3OSP5gAAAABJRU5ErkJggg== --------------080308070903060109020002 Content-Type: image/png; name="cbdhfdbh.png" Content-Transfer-Encoding: base64 Content-ID: Content-Disposition: inline; filename="cbdhfdbh.png" iVBORw0KGgoAAAANSUhEUgAAAqAAAAF6CAIAAABJE31GAAAgAElEQVR4nO29d3gUV57vXdz3 7p3x7My7e/eyM/Pci/0Ctlh8e73rXeMdj8fjwTAzGLCNbdzYXu8MOICNCQKESMamAZsoEElk BQRCqIkGI5SQBJIAkRSRQEgoo4RiSwKc+v2juqtPVZ1T3dVdHVT6fp7vo6dVXXVShW+dU9Xn xw146eCAlw4NGHVowKhDIwAAAADQBxk0aNCvf/3rrIJKQdyAkfEDRsaPGDFi1KhRycnJtbW1 VgAAAAD0Kb7//vvbTff+z+hxA3/5y+zCquzCKo7vuIeHh9fV1e38Jh+CIAiCoD6qwo77CSVV A3/5y5yiam7AqEOjRo2qq6vb9U0BBEEQBEF9Wufaega99V5OUTU3YsSI5OTkXacLIAiCIAjS gY41df/617/mRowYUVtbuzuxEIIgCIIgHcjc1DNo0CBuxIgR9+/f33OmCIIgCIIgHehgQ/eI ESO4ESNGWK3WyKRiCIIgCIJ0oH13CYOPSi6GIAiCIEgH2ltPGHx0SgkEQRAEQTrQjroeh8Hv Sy11qq0H80xrs+fNT5s9M2XGp8mzg1M/+zJr0/5rrmwLQRAEQaq02Zw907TrL8FrtNVM067N 5myfZRFzMO0vv3919MCh2uovv3815mAaq+m21HS7avCRiTdMa7KmfZj4yUenF8xLXbY0c+um 3H1R+XH7C7dvu7pi3YXIxBt+PxQgCIIgPWnqgk3JWfmVjV3aKjkrf+qCTT7LYsKwZ1N27+ku uqqtUnbvmTDsWVbTiQw+Nu0mS1Fnbiz8LP2Tj05/8Vn6gdiCwwnFBw8UHoorOn60NCe7urf3 4c3Se58vOx915oZCIhAEQRCkSpPnrK1s7MoqbtBWlY1dk+es9VkWowcOtRRcbkrYq60sBZdH DxzKaroN1YTBH0i/xdLyddkzpiXO+DjxQnbNg/vfdXU+sFgetN7rravrvHOnrbv72++++yFs Tc7nX55XSASCIAiCVGnK3HV3GrrOFTVoqzsNXVPmrvNZFqMHDu26fqnh4K7G+F2N8bsaD9rE L2ngP9g/N4q027bVwd2ODe0fuq5fGj1wKKvpVlcRBh+XUUbVDnPBzE/OzJyeuCAk9djREovl YWOjJTurKjur+kJOzdUr9UWFTYmny+bOSvp0auL2hAJWOj7Q2ilPcAKDZ611fLX5N9wTE6PJ laVLZo/kuJGbxSvIl9g3WTbWns3Y2dLUEicO5jekZSFm0JTE2SO53yxjlGrZWG7k2N+ItpDU AoIgSM963+a+d7XVnYau9+eucyWLVZv2TZw0jaVVm/a5ksXogUM7rmTfjY1waH/E3f22zzuW LBUS3LFkKXWJXPWxER1XskcPHMpqupV3CIOPzyyn6suwnBmfJM6ecWbpkvQN63Oyzle3td0/ m1YRHZkXvfd6xObLK03n5sxKmvVJ4oyPE1esu8BKx8s689Zgjhu51bHENJbjxgbb/t36HBf0 Vgy5vnhJzOxBg8c+N5hcZ+tzXNCgwdxzJtkmMbMHCSnHzH7LJEoteCQ3aMoZRqa0rE1jHcWO mT2IEzYvXz8lSPhsW3Pw7PX+aV4IgiA/6P156ysaujKKGrRVRUPX+/PWu5LFxEnTvmczcdI0 V7IYPXBo+6VzdVGb6iI31UVuqrV/4DVx0jQhHNzESdO2L1wsWVIbuamWWL8uahOfVPulc6MH DmU13ecVhMEfOldB1YJFZ2dNP/PJ1NNzZiWt+ipry6ZLaSkVd+92Xcyp3bY5d9WK858tOTt/ bvLsT8/M+CQxdOFZVjpeVdj7QYPeTzp0LumtwRzHcYMGBw16P+nQ8nHcyK2HzlUcOrf1OS7o rX3kJqIl/Ob2RIgVlgcPGhwcJtlk+TjOsVD0Vdj7QfYcqZnSlu9zZBH2ftBz7wcPsqWQ9NZg 0eZzRnJE8SAIgvSvD0LCKhq60osatFV5g+WDkDBXsnBq8KwNKxq6hCxGDxzamn22Zuf66l3r q3etr94ZZv+wvnrX+ojQhRMnTfvBjuRzROjCml3rq3et5/9W71pfvSuM/9yafXb0wKGspltc Thh8QlYFVXODkz756PT6tTnJSeUF+Y23y1pLS1vKy9vaOx4U5DeGrctZtCBt/tyU2TPOzJye OCc4WZpCbPAg2/DyuLlZFQlZW5/jgowrbAufW1Gx4YMg23j1B0m2HF+yD0i/tNWeTpJxiG3Z cyuo/46bm1Wx4YMgPpG5L4mW2zKNJQtGLkkyDgkyxlYkxAYPGhK8QbzC3JeEggmbbH2OKK3j qw/GcY7NqZlSl9tzt33Y+pyjofgPyqlBEATpVh+EhFU0WNKLGrUVb/BCFuUNXRlFjVQJBi8Z nCd68PQNySx4g6+MWF25bXVlxOqqiNWVEY4PVdtWb5sfOnHStG/FTJw0bdv8UNtq2xxbVdq3 4g2e1XQhty0Ogz+cXUnVrBlnYiLze3q+u9/7XW/Pty3NPfn5DVnnq8+mVaSfvXMgtmBRaOrc 4ORZM87Mmp44NzhFvHnEb7mgSfsrD2dXHl457tEPUg5nR/yW47ghczZmVx5eOY7juEc/SDls +zxuHn3blElD7Ktl25LiXooQrTlkzsbsynkv2fLa+EHQb1dWHnYsifit9PE3xwkF2z/nUb48 2SmThtgXOnKXf7AVieM4Phchffu/srqz2iSbLyS/obgWkjquHGdrNAiCoH6jD+dvuHSjbufX V6kKWR6h8IA8ZHkEa8NLN+o+nL/BlSwmTprW1NTU1NQ0cdI05YUKWYweOPTW7o1Jo/9ZQSte HS8ky6e84tXxypvc2r1x9MChrKabXUYY/JGcKqpCQtPSz97p7fnOYnlYUNC4elX255+lL1+W ucJ0btnnGUuWnF0wP3XOrKTZM87M+vTM4s/SRZsfmPMoaamjIo7kRPyWC5p0gF+B8XnleIcH H+ATGR8iS/bRD1PtSyJ+OyriSE7qpCG21cI/HD/pQBWxhMxIml34h0FCUuEfBnGjIijlkZbc UYzfrrSvvHLOo6IV5JkylvPp23KxlYcs1ZGcqpBRZH0hCIL6hT6cvyG3pG73yWtUkc+q5Uyc NI21YW5J3YfzN4iyOHWNqomTptXU1NTU1EjuHoSFrA1zS+qFLHiDTx37TMq4Z1LH2f6mjnsm ddyI1LEjUsc9s/KN14Q0BSZOmrbyjddSx45IHftMythnUsY+kzpuROq4Ealjn+HFGzyr6abf Igz+2MVqqtZszv1iacbN0pZuy8Pz56oWL0wzLcsMW5+zaeOlTRsvrl2d/cXSjJA5KbzBr9ua K9r84NxHufHzRQluf54b9vZB9mfHJqlvD5EsEWnzR8M4jnv+K37b8fMvVs8fxae2/Xl++cG5 j47aLstIkvX256U9ez4vcpPUt4dwz38lT6R680fDuFHbHSt/NZ5zFJWyPn35wbmPDpk7/6Nh z39l/3fUXFvdnSQFQRCkZ30UuuFyaf3e03lUTZw0rZzNxEnTWBteLq3/KHQDmUXk6TyqnGbB 2vBy6V0hi9EDh5ZFbs6Y+KJMv8+Y+OJXxolkLpLPXxkn0jZ8MWPii2WRm0cPHMpsulLC4E9c qqFq36mbM6Ynfrb4bEb6nba23qqq9rS0iviDRbt2XgnfeHHd2uyvVmYtXXI2eGbSnNlJsadv iTff8TuOe/SjNPGSYe/Esz9/NZ4bMnfrpZoT8XMftX2b9s4QSSI2bf1oGL88dDT36EdpJ+Ln PspxHDc+VPhAyZSRnU1p7wzhfveVbBNbgvwmc+3LhYI5Vt760TB7gvJMWYVJe2eIPXF7oxGF J9OEIAjqR5q6YOP18uYD6TepmjhpWimbiZOmsTa8Xt48dcFGn2UxeuDQiv07s/86Luuv47P+ Oj578rjsvzpEZjFx0rTV//muZEm2sMnkcdmTx2X/dTy/YcX+naMHDmU13eQbhMF/nVvH0vpt l2d8kjj949O7d14pyG9sbOxua+2tr+8qKWlOTanYvevqkoVnZ884s3HnNcrm8fMeE/rGo3d+ nbvzd9ywd+P5b6mf098dynEcxw195XdDyW9t/G5V3derXrH/98qCXMcKj01NZ1SBzEi0ZMFo 6VZbpw6TldO+3LbEURhu9E55+gtGc9zQeVvJ1URlkxembuvUYdzQeVtziRRsKdsahF01CIIg 3WragvDCqrYjOZVULV0XpfAMfum6KNaGhVVt0xaE+yyL0QOHVh2Oyf307dxP37Hrbfu/b6+b PFlIcN3kybmfviNb8jaxydu5023pVB2OGT1wKKvp3iMN/uSVepaOXahZ9uX5kLkpX63MionK S0y8nZ1Vc6O46f7976xWa0tLz/IvMlesyTl+sU4hER9o4R/JkfZXFvq1MBAEQZCH+njRppLa Ts2TLant/HjRJp9lMXrg0LpvDl8P/UgjTeU/1H1zePTAoawCTCruchj8qat3FXT8Yu26LZc/ /yx944YL0VHXzQnFx4+VHj1SEhudFxaWs3nP9ZNX6pVTgCAIgiBV+mTx5pt3LWfym7TVzbuW TxZv9lkWowcObTx7unBZcOEXwUXLgou+CC4UtGx24bLgwmXBhV/MLrJ9nl24bHbhF/bPX9gk bCV8aDx7evTAoayme7OIMPhvrt11qn2nylaHXwpdeHb2rKTg2ckLlmSs23YlLrnclW0hCIIg SJXmrtiTfvnmrYZubZV++ebcFXt8lsXrTz6XtnvPvQuZ2ipt957Xn3yO1XSvFRIGf/p6AwRB EAQFjvanFM1dsXv6ki3aau6K3ftTinyWxZ7o0xOGPat5PPgJw57dE32a1XTjCohn8GfyGiEI giAI0oHG5BM9+KT8JgiCIAiCdKA/5hEGn1zQDEEQBEGQDjSKN3iO46gG/+OPVgiCIAiCAlxy B//D9S7bb8apBv/Djz9+/wMEQRAEQYGrH378UbXBf/vdD70PvocgCIIgKGD17Xc/qDb4B99+ 39XzLQRBEARBAasH336v2uDvP/i+veshBEEQBEEBq/sP1Bu8pefbxnu9Mh14lZjw/Z8WXGvM +eyfuCfn5/Bf8R88kSj9VyPl3z45P6eXyNQDRb4pqoiLW2mStTatQavOP312TvLZC9ozgZOg ogHJ/ehhSdzbg55Wk1p4N2ok30QhEY1aDIIg3cnS861qg+/q/ra+uUem/a9wT4ZkyZcrf+W6 lBORf+tupnvf5BwbXg35J25Y6FV3S+U9EflmfTaMe3OX0prcK3vln31VPB9tSEjdHtSwmtTC u1EjVQezv45ACIICXV3d6g2+6V5v8e1WmaLGcMM/TZQvV/7KdSknIv/WvUxzPg3ixmwhliQu fJybsMHNUnlPZL6ut4zPSut2Rp6XUO0e1LCa1MK7USNVB7O/jkAIggJdTfd63TP4Npmix3DD P02kLiG+Slz4uC3tCRsoiShInr4jtcdnLxTnFT1GGDwdG60iF5sZkAsvfBpEpLxFyPFC8W1J LtRqcmO2EOWfbRvbfXz2BXviktXUt8aWCfY6kk0kbYfHZy8kPl+g7YvoMdzwMWOHc9yEDe4X jLGzKA3CbqVED1rG2R60V5B68HhYTfkRwjhuVR/qCmeQ+CyT5g5BUP+VOwbf3Hq/pKJdJsLt OG7MVn7J8BlJ1A/tJVtffyL4Ii0dlsj0Xw+3Lxmztb2kov1k8HBOIS/XlbToiaBFJ0ULL84I EqrDcfy3SYueoORCZm0rmHhNjhsXzdfdVoWtr9uWqJa8NRQKI19I3RfRYzjOtlPcL5g8I6UG oS0cPiPJgwI424P2o4568GhQTcUjxI2dK8A6g0RHnSx3CIL6r5pb76s3+Lb7pXc6ZIp5mRs+ M5m6xP4hedET5CVrXAwtHZZk6ScveiJo0SlWXpTyuKDkRU9wr4eLFl6aGURJMHwc9/I2yUKy mo5EnK3JPRF8SV0hJa2RvOgJSpWp7SDZSrIvpN+6VTDazqI2iHIruV0AF/cg/eDxrJrOjxD3 kpU2C2OvUXOHIKj/qrlNvcG3tN2/VdkhU8zL3PBZKdQl9g8pi57gXt9M2dYVydJPWfRE0KLT rLwo5XFFl2YFcS9HiHOxlZlMUFiNXEiv5uZx7DUrO25VdpyeM5zjxJmqaw3FwrDypewLaYu5 VTBaUtQGcd5K7hXAtT1IP3g8q6bzneJessxDi72jZY0AQVD/U4sbBn+v/UFZVadM+8Zyw2el UpeQH7gn5uTSNncqavrc2IjOsqrOxDnDOUpekvVdU8TrHPf6ZiILe4GJz6mLn7CtQ+YiqiZf MGdr2pQ4Z7jKZiFSSF38hO1z7qwge74Rr8saRP5Zsi8oLaa+YNSkWA2i3EruFkBpD4qqLzt4 NKim4hHiXrLSQ4ux16i5QxDUf3Wv/YFqg2/teFheY5Epdiz35Ow06hLiq7QlQcIA4/hYWjos xY4lxiaD5l4ur7GU73jD/u8SeV5bx7uRi4VMluO4sTtE1Rk7/knJciIXajWFNiHbx/7ZkdEb W9UVkmwNotmFBMe/QWl8yT6S7gviW/cLxjgYKA2i2EoeFoC9B+VtRRw8HlaTeoTIzwv1rad0 BonOMvnxCUFQv1Vrx0PVBt/W+fBOraX/KXYc92TwWb8XA9JaZ5cEcW9s83sxPBWOTwiCRGrr dMvgK+u6+5/2j+OenJPu92JAGiviFY4btiTF38XwWDg+IQgSyR2Db+/6tqq+p/9p/3juyTkZ fi8GpImuzhkmjHS/GeH/8nguHJ8QBInU3qV+JruOrm+r7/ZCEARBEBSw6nDD4BPTrkIQBEEQ FOBS34MHAAAAQMCj2uCtAAAAAAh43DF4f9+UAAAAAECJ8PBwGDwAAACgN5wbfEpBMykYPAAA ABD48AYvMXEYPAAAANC3ccHgC5tJweABAACAwMdm8GITh8EDAAAAfRsYPAAAAKBDYPAAAACA DnFu8KmFzaRg8AAAAEDgwxu8xMQlBt9CCgYPAAAABD6EwTtMHAYPAAAA9G3sBt/CNviiFlL9 xOC5AZzr8ndhQb+GI/B3WQAAAYTN4MUmLjL4tKIWQU4NnnMNX9bQDbgB3IXcg/lFx13R1l1L 4fHAZ8jPpuTk5B9//PHhw4ehoaG+P9f0ccoDoEt4gydNPE3B4NMUDZ7juKKiot7eXlZYm4cP H5aVlb3zzjuBfMJzA7i7DfkuuntgeryL11y3r8LR0dE5OTlerYKLuFeS0NBQN74KBDiO6+lp JDVp0htWqzUmJmbr1q1Lly6dNOmNnJxU4du8CzFunGuut6o+TnkA9IrGBq9wqvNcvHixoKCg pKTE7RPe2/0DvvsuKP1cFEvfJEXwijevCRyD5zguq7Q74Vp9aOiS9pzUzkvpHRfS2tJOtqWf bjuX1JqR2HTmaFPScdvf5K/rM1JC5i08da12X7qrO8Vzg9dqlwWOwYe6hnuJC/AGX3rdzOvo wbXjX37BarXOmjVr5syZCQkJv3/+6R2bF51L2smvsG7x771t8D445QEA7uHc4M8WtZBSNnjq Gf7jjz/yf3/44YfMzMzq6uqOjo49e/a4ccIPGMCdToqraygktXrdgmdGGDxtCaEWAzjBuamK N6+RKKB68BzHpZY0rjPnTJn8SdWGL6pWzK4yzS5f8kn58rlliz4pXh5S/Pns6/Om5s376Hro x9kfv5c19Z0P3p++ev+ZSXNX+8bgNbwnc6MkoaGhp06donptaGhoWlqaezYcGhp69OjRLDbn z58/efKkhx7PG3xW6u6s1N3H49f9cdR/fPvtt+3t7RcvXrx582ZhYeFnn3329L8MW/vlzOPx 67LTdn8571lvG7y3T3kAgNvwBi8xcbHBF7eQUmXw/Bn+/fff8X+/++6748ePNTU1Wa3WysrK 8PBwtSf83/7t39bU5+UVH+d1vejY9aJjJxO3P/VUkBat0dHR0cEN4OLNa9LPRbnYiZ8x691A M/iUG01r4rM+mTbn0vLPriydf2VJyJXPQq4unXfl85CMGR9dXTLn3KcfXF0acn7qe1kfvZsy 89NPps1ZHpX41pxVPjB4juPa61P8a/CZmZnr16+Xf7Vz505PDD4rKyvdGZoYPN87H//yCzk5 OfHx8fHx8UePHt29e/eePXtWrVo1atSo8S+/cPTg2tLr5i/nPONjg9f8lAcAuI3N4MUmroHB C+f5d9999+23D/m/Dx8+OHBgf0dHh9Vq7e7uzsvLi42Ndf2Ef/yJRyOjN9XU5124fDA7N+7C lfiLVw/lXk/IvZ5gfGfM//4//6hJi/AGfyH3oLynLu+4b921dNxrI902eGrdPbwCchyXWNSw +vC5kJAQ5bFTgZCQkJUxSW/ONHnb4DmOa28411Zi0urxitsGv3fvXonX8ssTExM9Mfi4uLio qKioqKiYmJj09PSjR49GRUWlp6dHRUUdPXpUK4PPzYzKSt299suZfx79m2ef+b9PGR4nJfTg L6RHrgj2ncF745QHAHiCc4NPL24h5dTgJef5w4cPHjy4z/99cL83KirK7Yfogwf/7+KS8+nn Y04lbT9xOuLUmR2JqbtSM6PSzkUv/2rmi3/49wEDBnj+hJ5q8EuXT5sx611eS5dP463dc4Pv kNm557bHcVxyUcNXBzLUGvyE6Uu9avAcx7XXJbaVmATdOPOXkxF/9KSy7hn82bNnjx07tmnT JnL5zp07MzIy4uPj+0oPvvS6ecfmRVQJz+B9Y/DCKZ+UlDRmzB9+9rNHfvazR8aPH/3NN6fu 9/Z4csoDADyBN3iJiUsM/h4ppwYvsfYH93vv9/bwf3t7u7stXXcqyosK88+cOR0dFTknOHjq B//p4tn++BOPllVcOv7NNvPx8P3xaw+a15uPhycc3Rh/eMOBQ+v2xa0xH91+6nRcUqo5Je3w uayTFy+fuXwtNeXsIVVXE6rBz5j1LrX7ronBC8XT5PLHcVxy0d0v92eEhIRcv379mjMyMjJC QkLWHEh9+YMF3jN4juPa61NIdxdUcOINt+vr3q1GZGSkpBMvdN83bNjgXkl4g9+2bdvmzZvT 09O3b99O9tq1evmO7MELWrb4o1fGvvCrX/7D//qHvxP0++effvF3/zZ86N+7cVCpNXj+lE9I ODRixL9ERm7Iy0vOzj6+YcOyZ599+sgRc2dHu9unPADAE+wGLzJxkcFn3LiXceNeul1ODV5i 7b293T3dFv5vt6Wrq6ujrq6m7FbpzZsl165ePn7syJovP3PxbP/5zx+pqLyyfc8XkbGrInYu 3b7ri92Ry3dFmrbv+iJy35dx5vUHEtbtP7Q2Nm7N/vi1sXGro/ev2hO1cu2G+Z4b/NLl07xk 8B2Ex2vSueE47kxhw4qY1A8//ND1HvyaA6l//uscLxk8x3GZx0Oo7s4rM+Zl92rt9lv058+f P3bs2Lp16/glGzZsyMzMPHbsmCdv0VN78PzLdzmKJCUluZivpAfPa8wfnzt16pTTvez6e+xq DZ4/5f/85z/s3RtWU5Pf2tqQmXnk5MnoFSvmv/LKH+vqaqqrK9075QEAnsAbPO/gGXZRDF6Q U4OXWHu3pcti6eT/dnV1tLe3trW2tN5rbmq8e6O4KDvrfPi65S6e7RzH3byd++Wq2Z8vn/6P v/wH6rgfiwEDBgwYMMClXGgGT47Jk1q7cZ5WBq+Ju/Opnb5cvyw2WdUQ/er9KX/6r1le7cHv nPGTgm0/l6jqzCttJaZbWfPdq7vbbwPExMScO3du165doaGhX375ZUZGRmJi4pYtW9xIikfy DJ5/7h4ZGRkaGqrs7jyqDP7MsU1fm8ME/eZZg4s72ksG/+DB/fu9PY888tMbNzK+++7brKxj p0/HHjwYsXdv+E9/+pO8vGu1NVX3WprcOOUBAJ4gGHwGy+Azb9wj5dTge3u6e3os3ZYuwdQ7 O9v5v50dbW2tLfdampqbGurraupqqwoLrm9Y84XrBl9alrv4849//4cRVVW3WlorGltuKauh +Wbt3eI71fll5VfLygsM/zzceS4DuHjzmm+SIqh2LtcLI/997cZ5Hr5Fr5W780kdu1r/eUyi i0P0OTk5vMG/NWW69wyeL1j4R/9D7vE3Ige1lZi+3voHXxp8aGjouXPnTp8+vWrVqh07dpw4 ccKT7nuHYg8+JycnISEhNjY2NjY2Li4uJyfn1KlTsbGxOTk5sbGxp06dUmvwkh78Pw78e6vV Gh8fHx4eHh4evnPnTt7OL1y4EB4ebrVaw8PDL1y44D2D7+3ptlg6H3nkkcuXT1dU5J85c8Bs 3rlnz/pjx/b/7GePpKYkl90qbWyod+OUBwB4Am/wEhMXG3zJPVJODb7b0mXp6uzq6ujoaGtv b+3saOuw/21vu3evpamxob6+rrqutqqm+k51ZfmOLWvUGPyF4JC//uIXv+juvif8WE4u/udz 14uOXc47fOHKofMXDqRmRh0+sfnxoMec5zKA47vs414b6YrefudPazfOG/HMP6tqd0m9tO3B nyioW7kvMeS991zvwa+MSXrjvz7yqsF3EB4vVJbv1leeGXf1jKvjB5qUpKOjIzQ0ND09/dix Y+vXr/fQ3TvEz+CFx/Be6sEnn9xK9uD/59//wr89+G5LV0d725gxI7dsWZmSEn/06J7o6I1H juzLy7vyyit/OnXy66LC/JrqO26c8gAAT7AZvNjEpQZ/jpDmBn8gaqsqgx87/vfl5cXN9yqu FR7lXZz/cK3wKKmrBUcu55l5d0/JiDydvGv5ypk/+en/cJ6LvQfvivhbAU8MnvpAwb2khATN 12s/23NyycbdS5YsCREzI3hecHAwuWT69OnBC79YFZv8/Bt/8bbBd9jH6jninYOkFT+7Ff8v /G/n1Kbm4ZQ7oaGhycnJcXFxnk8zR+3Bnz17ljf4HTt2bNu2LScnZ/fu3UKvXejHe9iDHz3y WavVOmvWLP6tiwULFvBdeb7XLvTjvW3w27ZtHTHiX1evXhwTs+nYsdisrHT+udjXJ44XFuSR Bu/6KQ8A8ATe4M+JTVxk8OdUGjzv6+3trVgIkt0AACAASURBVO1t9/jH7YLutTQ1NtQ13K2t ramsqaqoriqvqry9b+8m1w3+xs3sX/7yl11dzZfzDl/OM/N/c6+b+b8Xrx66dC3h0rWEC1cO ZecePJezPy0zOjF194lvtkXu+2riW3/6+c8fcZ6L3eCd/g6ed3dPevASR9fE4zmOS8itmb/t +PKoxJUxSatik1dEn1kWmfjF3tMros8s3nlyVWzyV/uSvtqXtHp/yoroM2HxZ1fGJK2LS/2P ce/6wOA7aD8cKNj2c38Z/NKlS3fs2LFq1SpNDN43z+DNB9bHxazat3sZr3/712H+7cF3dLS1 trZUVNxeu3bN+PGj+Z/JvfTSSyHz5vIef2D/vso7t9045QEAnuDc4M+XtpJyavCtrS28l/Nq aW5saqzn/zY11tfXVd+tq66tuVN5p+xOxa2K8pv79qgw+MSk+Pnz59y7V5N1Ke78xQPnLx44 f+FAZk7s+QsHMrL3nT0fk5kTe/Z8TPLZvcnpkafO7DhxOiLhaPj++HWmlbP+239T8ZKdKwbP P5jnn8G7YfBUL/fc4zmOO5xdM2/b0eBNR+ZuOfbSuNdGjXvjzfc+/CB48eSZC/5r+tz/nBb8 zocz3v7w0zff+/B3E6f8dtT4RTtOHUi+8h8vT/SNwXeIf/3PcVzpwX++ePJT3xi8lyaN59/M d/oMnn/uLnTi4+Li+IWe9+CFZ/BWqzXcDt+J37lzJ7/cSwbf2tpyr6WpuurOlcu5J78+sT92 X+Te3VGRe6OjIwfYOWyOL79dqvaUBwB4Am/wEhP3yOBbmhubGu82Nd5tbKhvbKjju+z834b6 mrraytqaO1WVt/lTvfx2qSqDP5iws7y8OCltT1LantPJu06d2cG7+InTEcdPbeN15MTmQ0c2 HjSHRceu2hO9cnfkinUbQie8OfonP/kbl3KhGbwwy41kohvhJTu1Bq/g4p734M25NXM2m4PD 48dNfHfH1rDKirLa6jstzY0tzY3NTQ2VFWV513NzL2Tu2b5x0vufjJ+65K2QMPOFihF/fs1n Bi8pcPHXr+/fMslnBt9B2LywUPjXPY8PDQ09efIky+C17cEfPxRG9uD/5r//P/7twfOn/N36 2rJbpZcuZicmnjp+7MiJ40dPnTwxP2QuZ/8NS+TeXWW3bqg65QEAnuDc4LNKW0k5NfiGu7V3 62t48f31+roq/m9dbWVNdQXv7uW3S2/funGrtCh61wbXDT4qenP93bKjX29JOBp+0BwWlxC2 P37d/vh1++LWRO9fzTv6rsjlETu/2BLxWVj4gnUb5q/bMH9uyOSfPvJTF1uEG8Bt3bVUbvBC r53svvMGv3T5NE9estMWjuPMudUzNx6cGXZg5JhXy24WNdyt+XjqX9+cMObNCWNulRZfzMnI TDuddOpw3vXc0a+89er0ZROCvzx1ufzfXhzrL4OvubLYvSu+2pLITd2Vr1QlLkd4Bq/wGN6T Hvw//M//17/P4IVTvram8nZZaXFRfn7elYK8qwX5V3MvZc+YMV3ox1+/lltSnO/6KQ8A8ATe 4CUmLjb4m62klA3+4cOHdbVVtTWVtTV36moqeUevrbnD/62uKq+uKr9Tcavidml5Wcmt0qKb JYVRO1UYfG39rcys49t2Lg3funh9eOi6jfPXhIWsCQv5au2cVWvnrlg127Ry5uem6YuXTpsX OmXu/Clz50/+dNa7o//03E8f+YmLLUI1+LUb51F/Fh+YBn/oUvWMDQfnhR8YOebVmuqKjvZ7 gsFfu3zhfEZyZtrpyxcyy8tKxxv/8tr0ZROCv0y56h+D5zgu95sZG74Y5zODZ/2r8JUneKMH n3Bg7f6orwLkGbzklOfH56oqb1feKau8U3ajOD8zI+2zJYt4g09LSbx+9VLkjjAYPAA+wGbw YhMXGXz2zVZSygbf2tpaXVVRXVnOv03D99f5z9VV5ZV3yqrulBHuXlB6oyByx3rXz3bOLf7m b/676y1CNXiFiW4C0OAPZN+Zvn7/nHX7nntxdNWdspbmxjde+/OEV/444ZU/XsxOz0w7feXS +eqq8qbGu2PeeOe1Txa/OtO0P+v2c38Y7WOD5zju2N7/2r5qgtuX+4DqwbNy1PYZfEtDfkA9 g1c+5W+XlRTkX01NTjx4YF/U3l1HDsdfzDm/J2ItDB4AH8AbvMTERQafc6uVlLLBFxQUVFfe rrpTxr9Dx4/GV/Gf75TdKb95p/xmeVlJeVnJzZLC0pKCG0XX90SsC6iznTd4/vV4VxSABr9w 7a7Za6OmfrX3medeKC3OLynOf23c6FfHjnp17KjMtNMF13Pv1te03mu+W1/zpwnGl98PeXXa on3nyn7zwki/9OA92fsevmRH/apDu+57hxd68IW5cbGbJm5c+vs1i39nmvmvi6Yagv6/n/ux B+/0lC+7WXz96qWzaUlHDh86+fXRC9mZu7bid/AA+ALe4CUmLjH4NlLKBr9r5+b9UVsORG3d H7llf+Tm/ZFb9u3dFLt3k+3vnvB9ezZF79oQvWtD5I6wyB1he7av+/hDV3+d5Rt4g1+7cR75 Yp2yAsrgOzo6fv6Lv3vtr5++N3vphPc+OBCzi3/ifjU362puVumNgrqaquamhorbpUmnT7w4 5tVx7y8YN2XOnqyb//HCS355Bu8J3jB4DbvvfJpJSUnK7u76XPQdjEGskpISp+7upbnoXTnl I3es37ll1eawFVs3rNyxZdW0D94JqFMeAL1iN3iRiYsM/sKtNlIKBt/h7hC6LyvsFG4A52Lf XdC410Y+8fij/i64CLW7YPi/vxhoO0IfsN68k+NJLn480dQead4rCQBAAm/wEhMXGfzFsjZS ygavD7gBnFr5u8gAAACACN7gJSbe3w0eAAAA6Os4N/hLt9tJweABAACAwIc3eImJiww+93Y7 KRg8AAAAEPjwBi8xcZHBXy5vJwWDBwAAAAIf3uAlJi4y+CsV7aRg8AAAAEDgwxu8xMQlBt9B CgYPAAAABD52gxeZuMjgr97pIAWDBwAAAAIf3uAlJi4y+Gt3OkjB4AEAAIDAhzd4iYmLDP56 ZQcpGDwAAAAQ+PAGLzFxkcHnVXaSgsEDAAAAgQ9v8BITFxl8flUnKRg8AAAAEPjwBi8xcScG Hw4AAACAgMeJwRdUd5JKLmjuYmC1cgwBAAAAQArLT6k8ePCgtra2oaGhtbW1naCjo4P/K9DZ 2dnV1dXc3Jxc0CwxcZHBF1Z3koLBAwAAAJrgA4OXmLjI4ItqukjB4AEAAABN8IHBS0xcZPDF NV2kYPAAAACAJvjA4CUmLjb42i5Srhh8sanYaHbJ4I2cleNlkH5lNjq+KjZZjWYnyzVBoTyi ddjfeoLZaDWYvJKyVdN26yvl9Jxik60w3qsvACBwsF1/DNZi+xKTwX5FMoqvTmb7Z0LC9cqx FZEUFV8YvNjERQZ/o66LlBODNxvNgsEXm4wmg/MefLHVYLCajVYT0Qxmo5Uz2r83ORqOtVxL aOWRYPTA4E0Gq+89yxftpgUallPDdi42weAB6B8UWw0Gq9Eguv4byQuR2cpxVjPxQbhqCauZ DI7rGH9PoHAt8oHB895dUmfhP4gMvqTOQsqZwZuJ25liU7HzIXpbL81MXEOLrQYjdVXGcnbK 8jssp1dqSnn4rIl7NIfBmykp8/duJiJ327FCJCK53aP2FIW7RYOJyMggS8rp3Qa73fiiGkyO Apjld1REqRR6tOQdq0EokkblFKVvP1ts5TRKlyu0M7W+rPQd5YLBA6A7TAZK95ofniw2ORza qtLgi03SZE0G0QVEkq8mBm+xWHp6eiwWC9XgJSYuMvjSOktpnaW03sJ/cDpEX2wq5gwmk0Fw dycGL/S0SNekX09ZyzWFUh6r1cg5buhEQ/RmkUNIjIT0G3I11t2c3EhES8yOY85E3GDyx5MS yu1mJtzXbKuCaGxctrlyOc1GR3m0KqfoDDE70uF9WvB7yVlEb2dafVnpy2sHANAHVIO3XerF F226wQsLjKK7Acm/8iWaG3xXV1dPT89TTz1Fejxp8DYTt0ts8PUWUk4N3mQwm62ctdhkMJic G7xZNJRha0SNDN6dHrwr5Slm9FDFPUVybJn0S1UGb7VajfaDyWGWsh6q8hCQU4OXf6vW4K3k 6wvsnrSb5ZT17IUHKArlVDB4aS7s9G3fw+AB6AeQnW/ypl9bg5fgocHz7v7YY489++yz7733 nuDxIoMXm7jI4G/WW0hp+xa92Sg2AL4VSAcVNT9juXbQy8M2eLJnL3FxiUO4bfDCIwPRkJGq dlBuN40MnkxQ6AFrU04YPADA+5DP6cj341QZvNMhegmeGDzv7kOGDBk7duzixYvDwsJWrVrF ezxp8BITFxn8rbuWW3ctN+3S1uAlBiBclCXvaRuJR8LU5VrBKo+R2KOOIWhZV140RG+gpGMl vV92oLCMxGiQ3jGofY9dqd0YBm9bWGw1yIY95OUUFU88CqJJOSXVNxJD9AoGT29nWn1Z6Qu5 wOAB0BnSIXrZBZn0HbJn77SDrvySnYZD9D09PUajceHChZGRkceOHTtz5kxGRkZiYmJPTw9p 8IKJ8x8kBt9NSjODJ8Zv+WurUfwveTNFujhruacol8cs6tYLj+HJpwD8216CIZEvf4nsgUiK fMajMJQteeND3g5Ohr5l6wvtJsnX0Z5ka5gcVWCVU6EwmpST+ihEaHzbCIekqV1oZ+X0FeoL AOjriIzWzLxW8JcUx+Cu5FIsv/IIiYuHAej5atGDlyPpwUtMXGTwZQ3dZXcdwkQ3riDpEQIA AAByPDF4F38mV3a3m/RxmcETgsE7hbx3AwAAAFj4wuDFJi4y+NsN3aRg8AAAAIAm+MDgJSYO gwcAAAC8jp8NvryxmxQMHgAAANAEHxi8xMRh8AAAAIDXgcEDAAAAOsTvBt9T3thT3tjNf4DB AwAAAJqg1uCvXLly5MiRXWJ2797N/xUwm83Xr1+3G3wPKU9fsvMwHjxlDnnZrDLkjDQa4ko8 eN3Dan+94oPjyhZgkJGs2vn+AABeIvDjwR85cqSurq7XDj+zTWtra0tLa3NzS1NT8927DVVV 1fn5hUePHnX+kp3KcLHaxIMXTQ5KzAgrmZrUK8bjQjx4Er/Ed/c2rPbXKz44rjD3EQB9gICP B79jxw7B2ru6LB2dne3tHbW19VVVNRV3qsrKKgoKi7OyLxYV3YjYHuE8XOyFsjZBF8vafBEP njAY+azgooZWDA+vVTx4Znx0dtxxq6r45dT1+cQNtkEFs2wmRWb6tDjuVvEdpVPDprS/cnkY cd8V4q87ZgImpsKlpqPcbuQ9tc1E7YkIAWmcDkKwjitm+Vlx7ombeup0/eQxaSYOUcnBr1Bf ersBAFTSR+PB79ixQ5iPtqOjs62t/d691oqKqlu3yktKbxUVlVzKvXruXE5+fqFg8BITFxl8 SkFzSqFDvogHT3qzzOBJQ/VG15lVHlVRy9TGL6evLwSwMTv8QDl+OaucrHjtLOjtr1geZtx3 Rvx1WznFwWxY6bDajQzzwK8jBJhxKbKcvL7y44pRfnp9zaI7MMkNn2DwksLIg9koHCfUdgMA qKWPxoPnDb67u7uzs4t396amlltl5Tdu3CwoKL52reDixSuZmdl5eQWCwUtM3COD1yAevOs9 eMXHpZrFg1dr8GrDm7LWF8bG7aWybe5W+FRKvHY29PZXKI+snZWit4nH/CWR66jpsOqlEI7W sV9YYebF9WUeV9Tys+rLCFpjFUZQaAWmGjz9OKG2GwBAC/pEPHg/G7wG8eDZFy/RhU/2r+co lKevGzyxtks9eMq2rPIox313ZvCuGLYbBi+s5spLEkrHFa0ZWfkaOVHPXmLwRsbTOPcM3pUb FwCA6/SJePB9yeBZ8dcllzxyOXnRNGr9wrPz8siGRqlxx9XGL6evzzZUhfSp5WTFa2dBb392 eZTeA3cWf508+lnpsNpNKc49X2zXXFDpuKKlQC8nacDC4wyiMELcYVeG6J0eJ8pXDQCAMn00 HnwfMXh2/HWjUTr+KXkjydXxdlUox4NnxEe3Wulxx1XHL5evLywx2lYWXvWSj4o7jeOuKig7 9dGGWbk8jCxcib9ukL+Bwtjv1Ljv9PjxxK5xpfvOOq6Y5WfUl0yKP4zJxjEVO4aIbE9AFI9z 5ePEAIMHwAP6aDz4PmLwAFitVq8+S9b1IDaewQOgA2DwQIeQd7iaQ75Loe1bGn7Hq+0GAPAx MHgAAABAh8DgAQAAAB0CgwcAAAB0CAweAAAA0CEweAAAAECHwOABAAAAHdL3DN7FePDKcbjJ KLyOmd1ks4JoiEJ5qFG/BNyL52107ZdOlHbwNl5uZ7dB3HQAgFcJ/HjwfjV4lfHgWXG4mdHP yGlWXZunTBXKccE1n1rEqWGrjQKngLq49erbWV363k8HAABU0xfiwfvR4NXFg2fF4WZaqVk6 rb+C47oRTU453jwrrKckWaV43kTn2GhWZ/ACtnlPidrRRz4YIc5cmvuF1c7UOOgK6bPipivG cZenozCCIq+vcjx1AACw9vF48H4bolcVD14hDjd9xi6J6boQN0UVyvHmFWLcuRjPm4xionqI 3iBdSPq3EOSGGife6kkPnvhXIe47NX3W+sw47orllLczq76s9gcAAB7Eg3fH4FXFg3clvrvI SNQYvAY9eHF5VBk8JRqYZGp0SfRPZ5DtYDLQwpuyw8haNTF4xbjv9LC5jPVdiuMuQ9rOHobN BQAAAsSD1/gtehfjuxuFBlUzRO8GyuXxr8FbiXaQhIv1tsELFVRrzMy46TB4AECAgXjw3jV4 IxGq1WFg5HXcLH004sWX7GTx5j01eHGBXXlpjtUO/CCPgGCKrDjxoq9ceWmO0c4K77FT02et rxDHXaGc1CF6an1h8AAAZRAP3rsG73ocbttF3I2XxdTgenkcQ8205UrxvMlfVhidP4antwM/ RG+klJMZJ16ctZNmU2xnZmh5Rvqs9Zlx3GnpsNqfWl/l+PEAAGBFPHhMdBOwSHquAAAA+iIw eCACEcEBAEAfwOABAAAAHQKDBwAAAHQIDB4AAADQITB4AAAAQIfA4AEAAAAdAoMHAAAAdEjf M3gX48Fb5VMDctIJgGwTBZisRrNj5gFTMTEdiqbBZhTK43dcDE4jbzcFWFHaFKK3WdXHZfdS HHcfHA88iEMPQD8B8eC1jAdvlcw9bp+NVR5tjJ+VTHmmUk2glidAcBpelt5uznB9Ct7AwifH AwCgH4F48IoGry4evNVuqCIvYdmqfbkwd79yABU3osnRy2Nfzppv1RY/2P6VbU3JUATvzWZ6 Sajp2KpM3Bs6MXjF2xFq+YWGUhUGl9qM5B2rwaBmfbfjuCscD2raWSFfavmVy+kYVzBhilwA AhfEg3dniF5VPHgrcaEnA3vTL4v28GtGg83qnPZo3YBSHsU46zYvsfu3k6huZtHNAWUOdjId tfHj2VFVlMqvvgdPNX5hiTyIjrfiuCscDyrbWTlf1o2OfH1HXsVWA9wdgAAG8eDdMXhV8eCt 1B4z26iMBtu3/GCsssFr1oNXDMNKLS2fiBDzzVFOxWAw0nTUhpdVuDFSKL8WBm8Vx4NxMkKg XZhX5vGgqp2d5etqtEDxDgr0BxwAADGIB6/9W/SUYXa2k/FR1PhhEIPRKw/I6eVRafD8CkaD 1Wy0msyOzckeufQNOM8NnrWCTwyeSN1ZD147g2cdD+ra2TsGjzC1APQtEA/eJwbPjhduMlgN /PpeGwKllkchzjr9Om62GvkqmK0GcthW3MV0ajxq48crtBuz/FoYvCh9s/R21Xtx3OnHg/p2 1sbgxfVSPqsBAP4F8eC9bvDkHZPk/WdqvHCyKb1xAWWWhzHkK4lT7rjoF1sN9hQkvUnHykbH Jsx0VMaPtzLazcXyCwei2uWsoO/ejuPOOh5UtbNCvtTyK5WTqJcBBg9AAIN48L7owQOgS/AM HgDgFBg8AH0G8s4dAACUgcEDAAAAOgQGDwAAAOgQGDwAAACgQ2DwAAAAgA6BwQMAAAA6BAYP AAAA6JC+Z/Cux4N3TCRC/qZIPAsKfeIU2W+QyKi9mgehUchXtE4g/TLKeXnY7ayM7+Oju9L+ rtOn47t79TgHoJ+DePAax4PnJxaVzI4umu5UMoMgbX3laGbaQC2nmEC74Dovj0I7BxoutL83 UA5J7GM0PM4Dql4ABAqIB69o8Krjwdum9ZZMAG6WTt9PzkIqX1/VrGHuRZmjl5MWr124y+Pn ohd1PWlxypXji5P3jI6pzsnON2Pww3n8eCuznVnx6anx0ZXqyygnK30F6O3PiEPPWq4unr1s hIM6hbBX9iO7ESgHqj0RIWAPmZq6esnLwy8x2AZRzLIZPVntD0CAg3jw7gzRuxEP3jbPuSTI upH+L319788gRs2XFa9dEv2W7CVT45Sz4ouTc63z6/DZkUFN+ONJuTxM2O1MjZtOqZ1ifVnl VE6fCrX9WT1atfHpFdan93S9vB8VoB/nZukVhF4GZ/Wil0cI2GO/ogmxdnwxcgaAd6AaPOLB axoP3iwayhA1ItV4WOsTOL1QutODp+arGM7VSARicYz2MIK+sKKT0bvgsh6YcEepLrys1YnB s9qEFQ9eWl9WOZ2lr1xOyX5nxaFXEZ9ecX26wXt1P7qG5Dh3lFPcsCrqxSqPcCDZ9wJZTYV2 BqBvgXjwGr9FbzaKLyhk95E2dMxcX4xR62sNPV9FQxWGlCVDPdQ45eqMgbXcY4OXdMRVGTy9 vgoFUGPwLu13WRx61nJV8eypBu/d/egyRtoNE/Phuiv1Yt2IsA2elT4AfQ4T4sFra/DyYXah FyLxRdawvBDGVNRLZt8uuYdCvgrx2o0GWfedEaecZQys+O6s98DVxo9ntbOkGBJYBimtr/L7 6moMntX+JkYcetZyVvkV1nd8ZZb1aK3e2o8slI9zk8Fqlo3Vq6gXqzxsg1duZwACGekQPeLB a2nwxHigEDfd9q+Z9hKQwvrF0rjdWr5orZgv+bKVPF675E0NKyNOuXIcdBM1vjsrBLuq+PHs l61Y8emZ8d0Z9WWVk5W+2vanN4L6+PSs9SVN6ngXzdv7kYGT41x2hVJbL8omQvsbbZsIr0Ya zeoKD0BAITJaxIPHRDcABDSqXmsAAAQAMHgAgBLkOwpOf48AAAgcYPAAAACADoHBAwAAADoE Bg8AAADoEBg8AAAAoENg8AAAAIAOgcEDAAAAOqTvGbyr8eDNjFkyGHHK6TPMaDh5Fqs83sbd uOx9FK/vRzt9Ou47AMD3IB68xvHg6RG+qXHKaaFCNY8O7vuI41Yro74+gTl1uffwyX4EAADV IB68osGrjgfv3OCFycPtk28Lc/crm5N7cd+Z5ZGloBT/W2Wcb2bQF1o6/L2hiaidaD5wWk1N 1PjrjKlqhYlIrfajUzLfKiWOu6r6KuxHNeVXaH9q3HfleO2OcQWTS8cJAKBPg3jw7gzRq40H 74rB2/61B70wGmzRRzwMxqWqPKrif6uO880I28pKhzc80lwFg6SW05am4L5m0VCS/CaJFTSF lY66+irsR5XlZ7W/lb2Etb9seRVbDXB3APoBiAfvjsGriwevyuB5JzBbDSaboygbvJY9eFXx v92I8826oWGkIzE/RzEY5RQVT4wbBi9NR319mftRZfmVyskwePr+MihtBQDoDyAevPZv0ZOG 6rj+MoasTQar0WgbBjEYtQ8LyyqPVvG/2bnS68tKR/LQ2mk5JcWTJOWpwauvL2s/qi2/Nwwe IVsA6J8gHrx/DN5I9FwNBsfzY29ciCnl8Tj+twu50uvLSocf5CH/VY5TLimeJCl5XHDJSwBO DV5tfen7UX35tTF48Q2T8tkIANAHiAfvZYNn/cyAHaecbErtL8Tsnz14GP/byZA1u76sdPge sPy5A7WcVuX469S44GQUduKlM4V0VIUGZ+1HVeVXaH9q3Hel/UXU1wCDB6AfgHjwmOgmQMHv yrwHnsEDAHwGDB6IIO8NgVagVQEAvgcGDwAAAOgQGDwAAACgQ2DwAAAAgA6BwQMAAAA6BAYP AAAA6BAYPAAAAKBD+p7BuxgPnjpXPDmhmDCxgNEeYkQyj6C2KJfHDczEXDTknDAKyz3/BTal 3TRNn4KX94vbqK0v4scD0M9BPHjN4sELM4qYjdKgZORkI/w0gZJNrF64HCuUx63kxDOcO12u Bax28zZe3S/aohxiGADQr0E8eEWDVx0P3koYqqORGbOJiZYXOwk24140OWp5mHHQGfHLyT46 2allLafGL5duYnB+w6HQbqz05XHQleOmO8+X3C/sOPGsepFT3irHa1cbD15hSmCF9pGXx432 AQAEGogH784Qvdp48FaaoVoZM4vRY3hrDbU89HjqCvHL1ffg5fZMztnO+4rTEQWFGdnk6bPi oCvHWVcuOdkOrDjxrHqJzgSzY333ykktuUIPnto+1PKobR8AQKCBePDuGLzaePBWlqHaIY2B 7JS74jpa9eCtVkY0NoX45VoYvOqws+LUJB4vTZ8dB105Shs9L3kLs+PE0+slG5KxRfZzt5ye GjyrPOrbBwAQ+CAevFfeolc2eCsRPtVxCZa1soa4bvBK8cv9bfBWot3o6bPjoLth8NT9wiq/ Jwbvejlh8AAA10E8eB8ZPGmc5HVW0ntTuC3yBFcNXjl+uUZD9OQSI+f8Tojabqz0WXHQ3Td4 8X5hvXDHqpfkJQMjMUTvRjlZBm9LSnaiKrcPWR4YPAB9HcSD97rBS0bR5bF4be9VEVdk8uky 31Ia4mJ55C9nCW9dOd6iJDchYp9Tl1Pjl8s3cfrOAb3dFNKnxUFXjnNPQXG/sOLE0+vFeuSh spwK7Um+F8nav9T2Ecqjun0AAIEH4sH7qAcPAoG+8rJYXyknAAA4BQYPvEhfiYPeV8oJAACu A4MHAAAAdAgMHgAAANAhMHgAAABA1XByMgAAE29JREFUh8DgAQAAAB0CgwcAAAB0CAweAAAA 0CFuG3x3d093d4/FYuns7GpoaKqru1tTU1dZWVNUVBIQ8eCt5AQjff+3T+SsZ9R6CVMlkFHp OIP2cejV4tUAr2TUOF9CRnH2cMZf70E//iVxpp0V3hbdjj0JUoAH8FXCm7GVAZDjx3jwvOe6 bvC9vfd/9/zzH37wwaKFC3lt3rTpxPHjt2/fCYh48DaKrQaDY5ZvpwRoPG+zbIYjWr0k//LG o3EcegZ+aTdp1Dg/xaf3JF+vtxvtOJGU35WpgtVGVtSqXt5uH6eBKgDQEr/Gg3fq8RKDnzZ1 6r6YmK/tnD179vLly141eNXx4G3XJnEEEY6cBFiYBZAdz9vKjiNO3kk5egOMOO7MuO/OkMeu ldfLyjB48lulsLl8YfhGMNg6f2bZDIuUdlAZB50caZBOQ8uO705B1v3iK8iX0ESMW4jmz5el 72l8erI8RHa2usun1BWOE4XjTV5OZ/tFoajy40RUfnFMAbIPIdwIFpusRpOjSGYiHco8mqrq pZAvIx3m+atwfikcV+jEA+8QmPHglT3e/0P0auPBCz0A0u0UgnlQewwKcbvpPTmFOO7UuO/O MMou5dR6qTV4er2EwDb2I0xoLlY7WBV7Wk4iqZtFc+lT47u7mKywK/kLPXlxNyum70b8dfrM d4xjSaHHzzreKOVk7xflclKPf9IUhUSkIyLimxXhs9tR9Vjtz8qXlY5SMB7a+aV8XBl9+8QK 9BOoBu+vePCcDFd68D4folcbD94sGsoge5YqDJ4d1tMqjiNiJjdhjAS4ExxMfDQo1EudwTsN n2rPxdZciu2gyuCtxC2L4+LLju/uarKEwZM1dZSfkb4n0dskhuFoB3E69OOEdbxRy8naLwqw j3/qCBPrZQJtwuay21/hJQY3DJ4SlVHxuJIPjwHgDfwYD949g/f5EL3Kt+jNRvGJTfQStDJ4 YqnjQq8Ux10Lg2fVS1Qwxgi2KFn/GbwwdCwaqlI1WMquoOQlA2EXuGdgThGNrxA3GfQGcWHk gxnPXqXBKxz/tjqKrybeNXh2+t41eGfHFQwe+AZJ6EvOH/HgA32IXpXBS05sypBpsdUge0wu j+dtciGOuMOrlOO4uxXeWzJEr1Av0VCnzI/lQ/SUerGNhNUOVka7CSWhVtlokCao9n1s1kt2 JgPdRFnpqzV4o+S5vixas1l210g5TiRfEe1GL6d6g3d+/IuPE0m+wnXHPYN3tV7sfFnpKJy/ 1N2nfFxhiB54A+kQfQDEg1f7kp0fhuhdNXhiXI4/e43kv+S3JvFAJS2eN2vI3cQIRs6K486K ++4URydDuV7il5UcxTfRy0mpl7DEaGsK4ZUl+Sg35d0CcfpKcdNptyAKTcqCWl+TQfTSnPw9 RzJ9N+KvS+oltQfZmaxUKerxJt9Eeb/IUThOhIOBdj9E5us0Pr3S/nWxXrTlTo8r1vmrcH4x dwFesgPeQWS0ARAP3o2fya1YvvzE8ePpdi5evFhQUBAYBq8z5D+TA2xMXvgdoArcGqQBfgE/ kwP6RtnRFQy+DwzR6wk/m1bfgf5+u08gn3nDNvoA6L4DveO2wWOqWgAAACBwgcEDAAAAOqQP GTwAAAAAXAUGDwAAAOgQGDwAAACgQ2DwAAAAgA7pewavKnil40dTRNxuVpx46VSCnJUz0uKp 28OwSpdzVlOxYzn/qzZbmvgVOwAAAN/SpwzeTATRKrYanU0nohS3mxEnXjT3tX0WUml4Tadx 1s3iqfHg7gAAAHxOHzN4pSlCZSiE/qTGybbaDV6yofAvNWoFK866MD0tpjwBAADge/qUwdtj irg+rRtrXjNqnGxyfYnBK0yOxprt0shZDQhUBQAAwE/0MYO3GbP6OSZFcbsZcbKt2vXgJbkA AAAAPqaPGbwnGImwlZI36QRY8acVwofA4AEAAAQgejZ4VtxuVpxsq2sGL1kHBg8AACAA0bnB S1/KU4ynTv5MTrgzoP4czkz7ymn8eAAAAMBn6NngAQAAgH4LDB4AAADQITB4AAAAQIfA4AEA AAAd0ocMnlMpAAAAoP8CgwcAAAB0CAweAAAA0CEweAAAAECH9D2Db08IysyhOLpsOZPKsKdi 3iQUlix8lR8sLAzJDN5O2YRYqICQzomEcul3OSH2rEMqvbE+AACAwMPmI8Hb220LygnHSSZd pt1x2XcoM0e2lSMpOn3K4HP+rlIw8ppfZSb81Obl9OVOaE94XeKO5JLKMIeXV4Y5bgLaE153 6vGVYYLvJmc69op9c8KnNV8fAABAgFKz/URwSGbw6/k1wiLxNTwnxHbBt3+wu4+wWnl+sMOP KsOekhsESd8y+MeI25mg/Bp7Z52+3AnKBi/eJSJHrwxT4antCa87VpYlpfH6AAAA/E95fjCl e833zdoTXieGjdUZPN/DJJItzw8mx3Gl+fYpg7dy7QlBMcG/yg8m3J253AlUOyeHPpir5YS4 PDCeTI7zW3NCToSFnLDdiJA3cRqtDwAAwP9QDT45k7+M12w/4eh2MwzeDjl+LP9XtqSPG3x+ 8GOVVs5a86sTwb8iDZ623An0/jrxLe/x7ht8zfYTlPF2+92WvHfu8foAAAACE6LzTXa7tTV4 KX3M4DV8i17Z4K3W5Ey+od0aom9PeF3e55Y8v88nnsRosj4AAICAhHgzTvR+nDqDdzZELwUG L2AfP+Gp2X6CfJFB5Ut2rHXyg4V96Rhd13B9AAAA/kY2RC91boev89dzoWfvrIOu/JJdHx+i 18TgGT+TS84U/SZB1D9W8TO5mu0n6L9tcOxX0XKN1wcAAOBfxEZr+82b6Lk7+Ttnh79IBtvt P5YT90UVfiYHgwcAAAD6ATB4AAAAQIfA4AEAAAAdAoMHAAAAdAgMHgAAANAhMHgAAABAh8Dg AQAAAB0CgwcAAAB0SN8zeI/jwRMT2shmraHGg6dPjCOK16sUsI+Hn1ieNZEOAAAAfePHePC8 5wa2wWsYD75m+4ng7ZVhIpdlxYOXf0vsMBU+LQrtmhOC6WYBAKAf4dd48E493u8Gr1k8eJvX iuPCOY0vp7HBs0MAAQAA6LMEaDx4ZY/3t8FrFw8+P5i/65HGU5fHgxfQxOBVjeoDAADogwRW PHhORoAavDbx4IneMyv2qzxqnMsGLwla4/ByaQ8ej+EBAKB/4Md48H3G4DV5i54RTU6CPR48 sXuUDV7k3zQkKzhdHwAAgC4IiHjwgT5Er4XBy4fl7cP1jHjwQstqavDi7AAAAOiEQIwHH/Av 2Xlu8I5g6ry5CsPpr+fXMOPBu/AzOeeh2WU/k1O67QIAANBnCbh48H3hZ3KY6AYAAABwDWVH h8EDAAAAfRIYPAAAAKBDYPAAAACADulDBg8AAAAAV4HBAwAAADoEBg8AAADoEBg8AAAAoENg 8AAAAIAOgcEDAAAAOgQGDwAAAOgQGDwAAACgQ2DwAAAAgA6BwQMAAAA6BAYPAAAA6BAYPAAA AKBDYPAAAACADoHBAwAAADoEBg8AAADoEBg8AAAAoENg8AAAAIAOgcEDAAAAOgQGDwAAAOgQ GDwAAACgQ2DwAAAAgA6BwQMAAAA6BAYPAAAA6BAYPAAAAKBDYPAAAACADoHBAwAAADoEBg8A AADoEBg8AAAAoENg8AAAAIAOgcEDAAAAOgQGDwAAAOgQGDwAAACgQ2DwAAAAgA6BwQMAAAA6 BAYPAAAA6BAYPAAAAKBDYPAAAACADoHBAwAAADoEBg8AAADoEBg8AAAAoENg8AAAAIAOgcED AAAAOgQGDwAAAOgQ9wzeYrF0dHTeu9fa3NzS2NhUWlpWVFSSl1d45cr1nAu56RnnYfAAAACA P3HD4Lu7u3l3b2pqbmhoqq9vKCq6kZdXcOXq9YsXL5/PunA2/RwMHgAAAPAnag3+0KFDdXV1 nZ2dbW3t9+7da2m519zcUlFxp6ys/FbZ7Zs3b5WU3CwuLsnNvRIXFweDBwAAAPyDWoO/ePHi oUOHIrZHKCsuLi41NRUGDwAAAPgHtQZfW1vb0NDQ2traTtDR0cH/Fejs7Ozq6oLBAwAAAP4B Bg8AAADoEBg8AAAAoENg8AAAAIAOgcEDAAAAOgQGDwAAAOgQGDwAAACgQzwx+K6urh4aFosF Bg8AAAD4E08Mvqen5+mnnw4KCgoKCho+fPgLL7wwbdq0sLCwnp4eGDwAAADgTzwx+K6urp6e HqPROHny5MWLF8fFxWVkZKAHDwAAAPgfTwxe8PjQ0NCEhISrV6/aA83hGTwAAADgV9ww+MbG xra2NuF9OovF0tPTc+TIEcHdYfAAAACAn3HD4FtaWtrb2zsJuru7e3t7u7u7hSVdXV0WiwUG DwAAAPgHNwy+ra2Nt3AFLBYLDB4AAADwG24YfEdHh9zOBVMngcEDAAAA/sENg5d7eXd3N/9X AgweAAAA8A9uGLzcyFnA4AEAAAD/4IbBN6tBtcHXAwAAACDgccfgMwAAAAAQwMybNw8GDwAA AOgNnxn8spHc4CnRmpcfAAAAABR814OPnjJYweGjpwweuUzFcs1YNpLz4M4jespgjvMkAd2z bCRnZ/AU8gtb08kaj7XcafIcJz1S+C8DcOdITgVHJcRNpI7oKYM92RwAoDt8OUS/bKTsEpyR kZGxbNkywcijp4wUrnys5QFG9JTBgeghAUX0lMGDpywbSWkm1m2f8u2gBFbK3Mhl9O/8i/g8 WDbScWfCH0saJQwA6O/49Bk8/aot6oQR37OWa4QoeVv69t7jyGXEt/wNxmD+o30NR3kEg+c3 ceEKK/RRyWTsGTqytn/nWH3wlCkjvdQaXsV2l0bzWu8ZvAvf+Qf+xsOGrNstmLQwNuQ4KB2r iI4H0bGITjwAwI6PX7Kj9zF4j5Rf0lnLNUbcByd7VOQ/y0Zy3ODBI4UbAdJ/B0+JdrUnv2wk ca0W/UOavNABjZ4y2HEFd/kWIsCwP2ZZNlJmP/3P4EWnAKWaZIHtzxj4z4Lx27YXHRvCBgFW XQCA/9Dc4MUdY5khUS/cNgOQ9T9oy52k7w4qDN6+FrGc33qZi+8KiFKn5SZrLtEVW7p5X4Bw NPn9Xb8z+Gh5Bz5atILY4Cn3vMQ5It9clDoAoH/j+5/JBd6DQtcNnracGHB3oV5ODV6chg4M XnpHJqugtgYvfSszsA1eYYie/0fZ4OUrwOABAAJ++B28qmu3L2AaPO/dLhi8fYie/kq4/I1p hSF6eQ+3bw/RS4flJf7b7wxedoOr9JIdrfBkw8ieCmGIHgDgwC8T3QRYJ57WTeb4h59TbA9B lwnddPtzcdFyfmtHX1WoHeUxqajPL32dWsg4mrY6/wJeIDWdMuTrgdEZooaNZj1qUfkIRr46 K6GAeftM3smm/UyOPfBBvqM5eLD0UAmYagIA/I5/ZrILrE5833FNz360DwID7e5vJedRgN04 AwD8TP+dqpbVYQ44yA4/LuC6wMP7W/Jnlo6l6L4DAMT0X4MHAAAAdIw7Bj8PAAAAAAGPaoNn xaL3NPA9AAAA0J9g+SmVBw8e1NbWNjQ0tLa2thN0dHTwfwU6Ozu7urqam5th8AAAAIAfgMED AAAAOgQGDwAAAOiQPmPwxSaDeHIOg6nYo5qbjR4noWk6buQrYDQrr+ZOAVnpu5gvAAAA/6KJ wVsslp6eHovF4t0efLHJ4HAUs5EzmPzXbv6m2GRwufomg3qDZ6WvJl8AAAB+xHOD7+rq6unp eeqpp0iP94nBC/+QvXuR/Qi9TYPJ5OjJCquTvscvNBqF/qktddZytekolEcBomKiqkvGMpwl YjCZhZRsedrKaXYkKBSGlT4zX0b780sNpmL79+jwAwCA7/DQ4Hl3f+yxx5599tn33ntP8Hhv GTxhLw63IHuoxSaD4DEmg8ilJW5aLOvYFpsMpK8L37KWq01HuTxyTAZiHcmIhboePGHfxaJS kHcNovKo6cGz2t9WbMH1zUY4PAAA+AxPDJ539yFDhowdO3bx4sVhYWGrVq3iPd4nPXjetGQP 523mKrYiF42ZanhKRuh6Os7KI0WUiixnlQZPpiQkrI3Bs9qfmiwAAABf4YnB+/oteonl2f81 G12xIreN2TsG79z5tDR4qXdrafCs9qcmCwAAwFf0XYN3vL3Oeo+dNDbRcLfVavW9wTsrj3L5 pT6qdohe9Lxc9vhA/shAzRC90u8IYPAAAOAn+ozBy0eCSecQf2m3V2Ibg0FwS+m7Yvz6wrpG s2MV4gUx6XK16bDLw4bx0oG0JRSfbPM/kzMaHTmLhgGEhcRLf6z0FfKltb+0ffAAHgAAfEmf MXgP6+n8mbdvCbTyAAAA0BmeGHxXV1cPDW+9ZOcGRJc5IH69HWjlAQAAoFfcMPiWlpb29vbO zs7e3t6nn346KCgoKCho+PDhL7zwwrRp08LCwnp7e7u6uiwWi/8NHgAAAOifuGHwHR0d/L89 PT337983Go2TJ09evHhxXFxcRkbG/fv3e3t7LRYLDB4AAADwG24YfDdBb2/vgwcPQkNDExIS rl69+uDBg97eXuFb5wafXNAMQRAEQZAONDyvDgYPQRAEQXoTDB6CIAiCdCgYPARBEATpUDB4 CIIgCNKhYPAQBEEQpEM5DH54Xh0EQRAEQboRBwAAAABd8v8D0+KOkW4KMtMAAAAASUVORK5C YII= --------------080308070903060109020002-- --------------030709010907080200020205-- --------------000005020805050509040907 Content-Type: text/plain; charset=windows-1252; name="junk.org" Content-Transfer-Encoding: 7bit Content-Disposition: attachment; filename="junk.org" ACRONYMS * ACC = Adaptive Cruise Control :AUTO: * AEB = Autonomous Emergency Breaking :AUTO: * AMF = Android Multimedia Framework (can be used on Linux too) Infrastructure for passing messages between a host and other cores (denoted as CEVA-Link in MM3K presentations) * BSD = Blind Spot Detection :AUTO: * FCW = Forward Collision Warning :AUTO: * ADAS = Advanced Driver Assistance Systems :AUTO: * ADK = Application Deveopment Kit (MM3K) * DVS = Digital Video Stabilizer * SR = Super-resolution * LDW = Lane Departure Warning :AUTO: * TSR = Traffic Sign Recognition :AUTO: * VDMA = Vector DMA (in CEVA-MM3K arch diagrams): access both ISDM and IVDM * VP = Vector Processor (in CEVA arch diagrams, IE the DSP core) * VPU = Vector Processor Unit in MM3K (in CEVA arch diagrams, cmp to VCU in XC*) * VLSU = Vector Processor Unit in MM3K (in CEVA arch diagrams) * VMEM = Vector MEMory (as opposed to SMEM) * SMEM = Sequancial? MEMory (as opposed to VMEM) * CISA = Configurable Instruction Set Architecture (& VGEN) * ISDM = Internal Sequential Data Memory (MM3K) * IVDM = Internal Vector Data Memory (MM3K) * MCMI = Multi Core Messaging Interface (MM3K) * ISP = Image Signal Processing (MM3K/CV applications) * CV = Computer Visiong * PC = Point Cloud A point cloud is a set of data points in some coordinate system. In a three-dimensional coordinate system, these points are usually defined by X, Y, and Z coordinates, and often are intended to represent the external surface of an object. Point clouds may be created by 3D scanners. These devices measure in an automatic way a large number of points on the surface of an object, and often output a point cloud as a data file. The point cloud represents the set of points that the device has measured. http://en.wikipedia.org/wiki/Point_cloud * PCL = Point Cloud Library (open source) http://en.wikipedia.org/wiki/Point_Cloud_Library * OOB = Out Of Box, usually referring to C source code without tweaks for target DSP. * LUT = Look-Up Table (a key-value kind of data structure) * SVM = * HDR = * TAM = * HOG : feature extraction for gesture recognition & palm tracking :CV: * Hough : The Hough transform is a feature extraction technique used :CV: in image analysis, computer vision, and digital image processing. http://en.wikipedia.org/wiki/Hough_transform * HAAR Like : :CV: * Harris Corner : :CV: * Kalman filter : A Kalman filter is an optimal estimator - :CV: ie infers parameters of interest from indirect, inaccurate and uncertain observations. It is recursive so that new measurements can be processed as they arrive. * Lucas-Kanade : optical flow :CV: * CNN : :CV: * Sobel : :CV: * KLT : optical flow for emotion detection :CV: * Block Matching : optical flow for emotion detection :CV: * MSER : feature extraction for gesture recognition & palm tracking :CV: * ORB : object detection & tracking :CV: * Fast9 : feature extraction for gesture recognition & palm tracking :CV: * SURF : feature extraction for gesture recognition & palm tracking :CV: * LBP : object detection & tracking :CV: * HAAR cascade : object detection & tracking :CV: * integral sum : object detection & tracking :CV: * matrix inversion/multiplication :CV: image operation for face detection & recognition * histogram : image operation for face detection & recognition :CV: * bilinear filter : for augmented reality :CV: * bicubic filter : for augmented reality :CV: * bilateral filter : for augmented reality :CV: * RANSAC : :CV: * FAST : :CV: * GoodFeaturesToTrack : :CV: * Addaboost : :CV: * Point Cloud Processing : :CV: * SAD = Sum of Absolute Differences : :CV: * OpenCV :CV: Open Computer Vision library, http://opencv.org/ documentation http://docs.opencv.org/trunk/index.html and here http://opencv.org/documentation.html 32- or 64-bit floating point based. "standard" under Khronos. ** GoodFeaturesToTrack part of OpenCV * CEVA-CV CEVA's OpenCV implementation on MM3k :CV: 16-bit fixed point vector based (VEC-C). * MISC ** NHTSA National Highway Traffic Safety Administration (US) ** NCAP New Car Assessment Program (US, run by NHTSA) ** Euro NCAP (backed by EU) ** IIHS Insurance Institute for Highway Safety (US) ** jello effect - caused by rooling shutter? ** rolling shutter effect *** what is it? http://www.youtube.com/watch?v=uFFRGSCmTWc *** what does it look like? http://www.youtube.com/watch?v=EaB9EHeDLSk * CEVA PARTNERS ** CVS : 3D stereo depth map ** nVisio : emotion detection ** "60 Mpps for 1080p30" IE 60 Megapixel/sec for 1080p 30 frames/sec * Autosar (AUTomotive Open System ARchitecture) :AUTO: http://www.autosar.org is a worldwide development partnership of car manufacturers, suppliers and other companies from the electronics, semiconductor and software industry. With the goals of: - Standardization of basic software functionality of automotive ECUs - Scalability to different vehicle and platform variants - Transferability of software - Support of different functional domains - Definition of an open architecture - Collaboration between various partners - Development of highly dependable systems - Sustainable utilization of natural resources - Support of applicable automotive international standards and state-of-the-art technologies * Khronos The Khronos Group - "Connecting Software to Silicon" The Khronos Group is a not for profit industry consortium creating open standards for the authoring and acceleration of parallel computing, graphics, dynamic media, computer vision and sensor processing on a wide variety of platforms and devices. All Khronos members are able to contribute to the development of Khronos API specifications, are empowered to vote at various stages before public deployment, and are able to accelerate the delivery of their cutting-edge 3D platforms and applications through early access to specification drafts and conformance tests. https://www.khronos.org/ ** OpenCL = a programming language (CEVA don't support) * SAFETY ** ISO 26262 :AUTO: ** ASIL-B :AUTO: there are 4 levels -A, -B, -C and -D (lower to higher) Automotive Safety Integrity Level (ASIL) is a risk classification scheme defined by the ISO 26262 - Functional Safety for Road Vehicles standard. This is an adaptation of the Safety Integrity Level used in IEC 61508 for the automotive industry. This classification helps defining the safety requirements necessary to be in line with the ISO 26262 standard. The ASIL is established by performing a risk analysis of a potential hazard by looking at the Severity, Exposure and Controllability of the vehicle operating scenario. The safety goal for that hazard in turn carries the ASIL requirements. http://en.wikipedia.org/wiki/Automotive_Safety_Integrity_Level :AUTO: * Zigbee, wireless communication protocoll * 6lowpan, wireless communication protocoll ? * IoT, Internet-of-Things * Whitespace protocol :COMMS: http://en.wikipedia.org/wiki/Weightless_(wireless_communications) --------------000005020805050509040907--